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PREFACE. 

l/^hen I accepted an invitation to write the article for the JEney- 
Mopddie on the General Foundations of Thermodynamics, it was understood 
that the article should deal, as far as possible, exclusively with the laws 
of thermodynamics and consequences immediately deducible from them, 
and that all properties of particular substances and states which depended 
partially on experimental knowledge or other hypotheses should be left; 
for another article. I had long felt the want of a book in which thermo¬ 
dynamics was treated by purely deductive methods, and it has been my 
object in the following pages to develop the subject still more on this 
line than was possible in an article professing t© be to some extent an 
exposition of the history and actual state of knowledge of the subject. 

It cannot be denied that the perfection which the study of ordinary 
dynamics has attained is largely due to the number of books that have 
been written on rational dynamics in which the consequences of the laws 
of motion have been studied from a purely deductive stand-point. This 
method in no way obviates the necessity of having books on experimental 
mechanics, but it has enabled people to discriminate clearly between 
results of experiment and the consequences of mathematical reasoning. It 
is maintained by many people (rightly or wrongly) that in studying any 
branch of mathematical physics, theoretical and experimental methods should 
be studied simultaneously. It is however very important that the two 
different modes of treatment should be kept carefully apart and if possible 
studied from different books, and this is particularly important in a subject 
like thermodynamics. 

In most text books the treatment of the first and second laws is 
based more or less on the historic order, according to which a considerable 
knowledge of the phenomena depending on heat and temperature preceded 
the identification of these phenomena with energy-transformations. For ai 
logical order of treatment it is better to regard the laws of thermo- j 
dynamics as affording definitions of heat and temperature, just as Newton’s 
laws afford definitions (so far as definitions are possible) of force and 
mass. But in any case there is great danger of assuming some property 
of temperature without realising that an assumption has been made, and 
of this danger we have an excellent illustration in the assumption commonly 
made, but rarely if ever explicitly stated, that the temperature of a body 
at any point is the same in all directions. 

To lessen such risks and at the same time to carry the deductive 
method farther back it appeared to me desirable to adopt the principles 
of conservation and degradation of energy as the fundamental laws of 
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thermo dynamics, and to deduce the ordinary forms of these laws from 
those principles. A paper was published by me on this subject in the 
Boltzmann Festschrift, and some criticisms on it sent to me by Mr. Burhury 
have led to a more extended examination of the foundations upon which 
thermodynamics rests. Degradation of energy in some form or other is 
a necessary consequence of irreversibility of energy phenomena. We 
therefore go still further hack and assume the principle of irreversibility 
as our starting point. When an irreversible transformation takes place 
the number of subsequent possible transformations is thereby from the 
very nature of the case reduced and we thus have a loss of availability 
in its most general sense. When we want to identify the more and less 
available forms of energy with those forms of energy which we see 
around us, an appeal to experience is necessary. It is in fact possible 
to conceive a universe in which irreversible phenomena tend in a different 
direction to what they do in our own. A mere reversal of the whole of 
the phenomena of our universe would give us one example, and if we 
want another we should only have to imagine ourselves of molecular 
dimensions when we should find that the whole progress of irreversible 
phenomena (whether regarded statistically or otherwise) would assume an 
entirely different aspect to that to which we are accustomed. The laws 
of thermodynamics are thus restricted to phenomena of a particular sue 
in the scale of nature, and the lower limit of size is about the same as 
the limit involved in the applications of the infinitesimal calculus to the 
physical properties of material bodies e. g. in hydrodynamics, elasticity 
and so forth. The term “differential element” is introduced in the present 
hook to represent the smallest element which can he regarded, for the 
purpose of these applications, as being formed of a continuous distribution 
of matter, and the notion of temperature at a point is regarded as not 
more nor less justifiable than the corresponding conventions as to pressure 
and density at a point. 

It is, however, in connection with entropy and with thermodynamic 
equilibria and stability, that the present method of treatment is found to 
be the most advantageous. A controversy on entropy between English 
mathematicians, physicists and electrical and other engineers took place 
in England in 1903 at the instigation of Mr. Swinburne, an electrical 
engineer, who defined entropy by means of what he called “incurred 
waste”. In the present book it is shown that if entropy he defined in 
terms of increase of unavailable energy this definition will apply not 
only in the case of entropy imparted to a system by heat conduction hut 
also in the case of entropy produced by the irreversible changes within 
a system, of which a number of simple illustrations are given. 

Moreover the available energy method possesses considerable advantages 
in the treatment of thermodynamical equilibria. If we assume that in a 

j state of equilibrium the available energy of a system is a minimum it 
follows immediately that the conditions of equilibrium can be deduced 

■ from the equations of reversible thermodynamics and that it is only 
when the stability of the equilibrium is discussed that recourse must be 
had to the inequalities of irreversible thermodynamics. 
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The old and defunct caloric theory has left us an inheritance in the 
terms “heat” and “quantity of heat” the vagueness of which does much 
to cause confusion in the study of thermodynamics. The quantity of 
heat which one body receives from or imparts to another is a perfectly 
definite conception, and throughout this hook the symbols dQ and dq 
refer to this quantity of heat thus received from without by a whole 
body or system and a unit mass respectively. It was my original 
intention not to consider any other kind of quantity of heat. But there 
are many intrinsically irreversible phenomena of common experience such 
as the How of viscous liquids, in which it is usual to regard work as 
being converted into heat in the interior of a system, moreover in many 
such cases it is possible to assign a perfectly definite meaning to the 
“quantity of heat;; so generated. It appeared desirable for several reasons 
to discuss examples of such transformations at some length and in these 
examples the so - called quantity of heat generated internally by the irre¬ 
versible transformation of work has been denoted by dll or d/q and the 
total quantity of heat gained, according to this stand-point viz. dQ + dll 
for the entire system or dq + dh for unit mass, has been denoted 
respectively by d£l or dq. This convention sometimes enables the 
increase ot entropy to be put into the form of d£X/T or dq/T when the 
expressions d Q/T and d q/T are inapplicable. 

Into the difficulties connected with the extension of thermodynamic 
formulae to irreversible processes, some insight is afforded notably at 
the end of Chapter XI. Even the simple statement that wo may put 
dq *» l0 dv 4- y0 dT cannot be admitted without due reserve when irre¬ 
versible changes are taken into account. The method of treatment given 
in the section referred to is not the only one that could bo proposed 
and it may be said with considerable justification that the truth or 
otherwise of any proposed formula in irreversible thermodynamics depends 
largely on the particular interpretation which is assigned to the symbols 
in that formula. In the controversy of English engineers on entropy 
already referred to much importance was attached to the question whether 
d Q/T did or did not always represent the change of entropy, and from 
what we have said either party had considerable justification for believing 
himself to be right according to his own particular interpretation of dQ. 

A few words must he said as to the order of treatment in this 
book, as this is a very important point. The deductive method here 
proposed is not started till Part II (Chapter IV). This chapter might 
well he taken as the starting point of a course of lectures given to a 
class of students who are already familiar with the elements of thermo¬ 
dynamics, and it was my original intention to place it at the beginning 
of the hook. But it appeared that the necessarily somewhat philosophical 
discussion of Chapters IV—VIII hardly made a sufficiently easy starting 
point for a beginner, and moreover it is important in building up a 
theory that the main facts for which that theory has to account should 
be prominently home in mind. Accordingly Chapters I, II contain a 
general sketch of the most important facts and definitions of thermo¬ 
dynamics as based on experience 5 Chapter I containing definitions of the 
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principal thermal magnitudes, such as specific heat and latent 
Chapter II containing a brief summary of the conventional or 
treatment of the first and second laws. In these chapters 3 
has been made to define heat and temperature, or to aim al 
like a complete or rigorous discussion. Chapter III contains 
included in my EncyMopadie article under the heading “Cha: 
Independent VariableIt was difficult to find a suitable plac 
subject matter in any sequence but its present position was 
the best. The formulae there discussed are immediate deduc 
the principles of the differential calculus, which are in no way 
on the dynamical theory of heat; they would be equally true 
caloric hypothesis; and for this reason they would be out c 
Part II. It is important that such formulae should be kept i 
formulae which are properly described as thermodynamical. Th 
of Chapter III are not practically required before Chapter XI. 

In Part III, which deals with particular systems, the disci 
confined as far as possible to direct consequences of the pi 
Thermodynamics. 

Mr. Ferguson, B. Sc. has kindly assisted in revising the 
and proofs. 

July 1906. 
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NOTATION. 

Note. The thermodynamical magnitudes connected with a homo¬ 
geneous substance fall into two classes, those whose magnitude is 
proportional to the mass of the portion of the substance under con¬ 
sideration and those which are independent of the mass. The first 
category includes the volume, energy, entropy and thermodynamic potentials, 
while the second includes pressure and temperature. In representing 
quantities of the first category, we shall use capital letters when they 
refer to the whole body or portion of substance considered, and small 
letters when they refer to a unit mass of the substance. For example 
the volumes of the whole body and of unit mass of the body are denoted 
by V and v respectively, so that if M is the mass we have V 

In the case of the thermodynamic potentials it would be sufficient 
to make the distinction in the suffixes, referring to the whole body 
and gp to a unit mass. This was done in the “Encyklopadie” article 
but for greater definiteness we have used fp for unit mass in this book. 

The following list gives the symbols used in the present book and 
tbe corresponding notation of many other writers. The formulae are 
only given for the purpose of greater definiteness in distinguishing the 
various symbols. In most cases therefore they refer only to simple systems 
and hold good only in the case of reversible transformations. 

Generally speaking the symbols indicated in the third column by *) 
are most frequently used in Germany (Clausius and others), by 2) in 
America (Gibbs), by 8) in England (Thomson, Tait), by 4) in France 
(J)uhem). The numbers 5), 6) refer to Helmholtz and Massieu respectively. 

Name Symbol Other 
Notations 

Formulae 

Volume. V i) 

Density.. Q 
1 

$ v 

Pressure. l> 

Absolute Temperature. Ti) A, t*> 

Heat communicated to a system 
from without 

dQ1' (lq dll 
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Name Symbol Other 
Notations 

Formulae 

Heat generated in the interior dE, dh See Chapter IX, 
of a system by irreversible 
transformation of work into 
heat (where measurable) 

§ 117 

Total heat added to body . . . dD, dq dD,*=dQ + dH 

<7c| — 7„ dv + yvdT 

Entropy. s v2\ <pS) dS = dQ/T 

(reversible) 

External work . . . .. dW dw dW *=pdV 

(simple system) 

Intrinsic Energy ......... uv u ss>, JE3'> dU=dQ~ dW 

Available Energy or Motivity. . A 

Thermodynamic Potentials. . . . Sr f* y*), %r=~U—TS 

3r \P %p — U—T8+pV 

%s f* z2) %s= TJ + pV 

Generalised position - coordinates Xli X2l • • • dW = SXdx 

Corresponding force-components 

Partial differential coefficient of y 

* * • 

fdy\ d,y 
with respect to x with z con¬ 
stant 

\dxjz dx 

Specific heat or heat capacity 
(generally) 

I y 

Specific heat at constant volume 
7v C1), 7c, c. 

v-m. 

Specific heat at constant, pressure 
7p c s'1) JV»), 

■ff, Cp 

Ratio of the specific heats % Yp 
% = ~ 

Yv 

Latent heat of expansion at 
constant temperature 

k M3)Ce 

i ?'? = yi>c/21+ l„dv 
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Name Symbol Other 
Notations Formulae 

Latent heat of pressure variation 
at constant temperature lp = (U)r 

dq^ypdT -f- Ipdv 

Coefficients of cubic expansion at 
constant pressure and constant 
entropy respectively 

[ 

i 

1 (dv\ 
** ~ V \df)p 

1 fdv\ 
a* V (dTJs 

Moduli of elasticity at constant 
temperature and constant 
entropy respectively 

*2*7 

i 
1 

II 
II 

£
 

Mechanical Equivalent of heat 
or specific heat of water in 
work units 

J l/AV, E*> 

The constant in the equation of 
a perfect gas 

B B pv = BT 

Masses of the different phases of 
a complex (small letters for 
unit mass of complex) 

mff, mw 

Eor a binary complex also 
denoted by 

X and 

M-X 

x and 1 —x 

Specific Volumes of the two 
Phases of a complex 

v', v” v=xvr -\-(l-—x)v!t 

Entropy, energy and potentials 
of the phases of a complex 

* Distin¬ 
guished by 
accents in 
like manner 

Equation of curve of saturation il o
 

f' = f" 1p ip 

Specific heats of the phases of 
a saturated complex 

J 
/ ? / c ^ 

K V1 

%
 

^
 

II 
1! 

| 

where G(p,T) = 0 
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Name Symbol. 
Other 

Notations 
Formulae 

Latent heat of transformation . 1 rn ii 

Masses of the components of a 
mixture (small letters for unit ' 
mass of mixture) 

Mk 

ma, 

Partial potentials of the com¬ 
ponents 

fiat fib) • • • 

f*/> 
t 

dU=TdS—pdV 

■4" JEfji dMT 

dp - 2(juM 

In a galvanic cell the electro¬ 
motive force 

E 

Quantity of electricity passing 
through the circuit 

e t dV=TdS-Ede 

Entropy of unit charge at any 
point of a reversible thermo¬ 
electric network 

X 

Coefficient of Peltier Effect . . . n -S' 

1 !3 

II fc? 

Specific heat of electricity . . . a ct
 II H3
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CHAPTER I. 

DEFINITIONS AND ELEMENTARY FACTS. 

1. In this chapter, we shall give a brief outline of the more 
important facts, as based on actual experience, to account for which 
is the purpose of a dynamical theory of heat. 

The phenomena known as heat phenomena involve the consideration 
among others, of the two following concepts: 

(1) The Quality of a body known as temperature. 

(2) The quantity of heat passing to or from a body under given 
conditions. 

As the definitions of these concepts are best based on dynamical 
considerations, we at present only assume their existence together 
with such of their properties as are revealed by simple experiments. 

2. Measurement of temperature. — Gas-Temperature. Any 
number of bodies may be arranged in order of temperature by means 
of the following property, which may be regarded as a definition of 
equal and unequal temperatures. 

When heat tends to flow from a body A to a body B, the body A 
is said to have a higher temperature than B. When no transference of 
heat tends to tahe place, even under conditions which render such a 
transference possible, A and B *are said to have the same temperature. 

The choice of a scale of temperature is, apart from thermo¬ 
dynamic considerations, perfectly arbitrary. The most convenient 
thermometers, or instruments for measuring temperatures within 
ordinary ranges, are those in which changes of temperature are 
indicated by the changes they produce in the volume of a definite 
quantity of matter, usually a liquid or a gas, subject to given external 
conditions as to pressure, etc. 

In physical investigations the substances most commonly employed 
to define a scale of temperature are the so-called permanent gases 
such as air, hydrogen, etc. 

The constant-pressure gas-scale of temperature is a scale in which 
temperature is taken to be numerically proportional to the correspond- 
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mg volume occupied by a constant mass of some permanent gas, 
maintained at a constant pressure. 

The unit or degree of temperature is commonly defined as in 
Celsius’ scale by the assumption that from the freezing to the boiling 
point of water represents an interval of 100°. With this assumption 
the gas - temperatures of the freezing and boiling points of water are 
about 273° and 373° respectively. 

The advantage of a gas-scale of temperature is that it is found 
to be approximately the same whatever be the constant pressure or 
the nature of the gas employed, provided the gas is sufficiently far 
from the point at which liquefaction takes place. 

As, however, gases may be liquefied under the action of extreme 
cold, the gas-scale does not, in itself, apart from thermodynamical 
considerations, afford warranty for the statement that “the absolute 
zero of temperature is — 273° C”. 

3. Measurement of Quantity of Heat. In practical calorimetry 
quantities of heat are measured by the quantity of a certain assumed 
standard substance to which they would impart a certain definite 
assumed change of temperature. The unit of heat commonly adopted 
is known by the name calorie. The small calorie or gram calorie, 
often called calorie, is the quantity of heat required to rafse the 
temperature of a gram of water through an interval of 1° C in a 
definite assumed part of the thermometric scale. The interval formerly 
assumed in the definition of the calorie was from 0° to 1° C, but in 
certain modern investigations, a calorie defined by the temperature- 
interval 14-|-0 to 15y 0 has been adopted. The great calorie or kilogram 
calorie is the quantity of heat which raises 1 kg. of water through 
the same temperature - interval of 1° C, and is equal to 1000 small 
calories. 

4. Heating a Body. In ordinary language when we speak of 
heating a body, either of two things may be meant, viz., 

(a) that the temperature of the body is being raised, 

(b) that a certain quantity of heat is being imparted to the body. 

This ambiguity does not usually cause confusion in every day 
life, because in the majority of cases, the two operations (a) and (b) 
occur simultaneously. But if a mass of gas is rapidly compressed 
its temperature may be increasing while it is at the same time giving 
heat to surrounding bodies; the gas would then be being heated 
according to definition (a) and cooled according to definition (b). In 
thermodynamics it is therefore desirable to avoid the use of terms 
such as heating or cooling a body, whenever any ambiguity can 
possibly arise. 
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On the contrary, when a body is spoken of as growing hotter or 
colder an increase of temperature is always implied, for the hotness 
and coldness of a body are qualitative terms which can only refer 
to temperature. 

5. Isothermal and Adiabatic Transformations. A body is said to 
undergo an isothermal transformation when its state varies in such a 
vay that the temperature remains constant. When the body neither 
jams nor loses heat the transformation is said to be adiabatic. 

0. Simple systems. The simplest kinds of systems occurring in 
he study of heat are homogeneous fluids or solids subjected to no 
external stresses except a uniform hydrostatic pressure. The mechanical 
moperties of such a substance are expressible in terms of two 
[uantities, namely, its pressure and volume. 

The changes occurring in such systems can be expressed in 
erms of one variable alone if the transformations contemplated are 
ither isothermal or adiabatic, and in such cases the pressure would 
e a function of the volume. We might speak of the systems as 
aving one deyree of mechanical freedom, but we shall prefer to call 
hem simple systems. 

When the above restriction is removed these systems will be 
3©n to have at least two degrees of freedom. If a fluid - receives heat 
r has its temperature raised, its pressure can be varied keeping its 
olumo constant, or its volume may be varied keeping its pressure 
ms taut, but no third independent variation is possible in which 
oth the pressure and volume remain constant and the fluid remains 
omogeneous. The state of the system is therefore completely defined 
y two independent variables, and any third variable is connected 
ith these two; thus between pressure (p), volume of unit mass (•v) 
id temperature (t) there must exist for any particular kind of matter 
i equation of the form 

Another example is afforded by a stretched wire subject to 
e condition that only the longitudinal tension varies, the cylindrical 
rface of the wire being maintained at constant (usually atmospheric) 
‘assure. Here the length of the wire and its tension will be dependent 
i each other in the case of an isothermal or an adiabatic trans- 
rmation, but will be capable of independent variation under the 
ftuence of heating effects of a general character. 

Where the number of independent variables is greater than two, * 
6 system will be called a compound system. If the system has 
degrees of mechanical freedom for isothermal or adiabatic trans- 
♦mations, the total number of variables will be at least n + 1. 
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7. Use of capital and small letters. In dealing with the properties 
of homogeneous substances, there are certain quantities, such as the 
volume, which are proportional to the mass of the substance, and others 
which are independent of the mass. In designating the former class of 
quantities we shall use capital letters when they refer to the whole 
body, and small letters when they refer to the unit of mass. Thus 
taking the case of volumes, if m is the mass, the whole volume will 
be called F, and the volume of unit mass v, and the relation connec¬ 
ting all such pairs of quantities will be of the form F = mv. 

8. Indicator diagrams. If the pressure p and volume v of a simple 
substance be taken as coordinates of a point in a plane, then any 
continuous variation of the state of the substance will be represented 
by a curve described by the point (v,p). The curves corresponding 
to isothermal and adiabatic transformations will be called isothermal 

and adiabatic curves. Any diagram 
drawn in this way will be called an 
indicator diagram. 

Taking the pressure p ahd total 
volume F as coordinates we observe 
that since the work done in any 

expansion is 

the area contained by the arc of the 
curve in the ( F, p) plane and the two 
bounding ordinates to the axis of F. 

pdV it is measured by 

9. Cycle. When a system starts from a given state and returns 
to the same state by passing through a different series of intermediate 

states it is said to perform a cycle or 
undergo a cyclic transformation. For a 
cyclic transformation of a simple system 
the indicator diagram will be a closed 
curve in the (V9p) plane, and the total 
work done by the body, measured by 

the integral (J*) pdV will be repre¬ 

sented by the area of the closed curve 
described. 

If the axis of p makes with the 
axis of V an angle 90° in the counter¬ 

clockwise direction this work is evidently positive when the curve is 
described in the clockwise direction. 
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The sign (/)’ is used to denote an integral taken round a cycle. 

[For a system witli two degrees of mechanical freedom, the state 
could be defined by the coordinates of a point in three dimensional 
space, and a cycle would be represented by a closed curve in space, 
but the work done would not admit of such a simple geometric 

• representation. For a larger number of degrees of freedom even this 
geometrical representation would be impossible.] 

10. The Boyle-Mariotte Law for Gases. The equation of the 
isothermals of gases was first investigated by Boyle in England and 
Mariotte in France. The relation obtained by them, which is now 
known to be approximately satisfied by the majority of gases except 
near the point of liquefaction is implied in the statement that 

When the temperature of a gas is constant the volume varies 
inversely as the pressure. 

This statement is known as Boyle’s Law or the Boyle-Mariotte 
Law. According to this law the equation of the isothermals of a 
gas takes the form 

pv = constant 

and every isothermal curve is a rectangular hyperbola. 
If t be the gas-temperature as defined in § 2 it follows that in 

general 

(2) p v = R l 

where 11 is constant. 
According to Van der Waals a better approximation to the iso¬ 

thermals is given by 

(3) (p + (v — hj ~ constant 

where a} h are small constants. To this order of approximation the 
relation between pressure, volume, and temperature cannot be con¬ 
veniently expressed in terms of gas-temperature as defined in § 2. 
But if the right hand side of (3) is put equal to lit1, where It is 
a constant, the quantity V will give a measure of temperature which 
is independent of the substance chosen to a higher order of approxi¬ 
mation than the gas-temperature defined by § 2. 

11. Thermal Coefficients. — Specific Heat. The coefficients defined 
below express the ratios of the small changes in the physical properties 
of simple systems on the assumption that no internal friction, viscosity, 
or resistances of a similar character exist in the system, and no 
chemical changes take place during the transformations considered. 



I. DEFINITIONS AND ELEMENTARY FACTS. 

The term specific heat, or as it might better he called, specific heat- 
capacity is used generally to denote the ratio of the quantity of heat 
given to a unit mass of any substance to the increase of temperature 
which it produces. As, however, this ratio may vary with the tempe¬ 
rature, a precise definition of specific heat-capacity in any state is 
given by the differential coefficient 

dq 1 dQ 
y = -j7 or — -~ 
r dt m dt 

where an infinitesimal increase of temperature dt requires the addition 
of a quantity of heat dq to a unit mass or dQ to a mass m of the 
substance. 

The whole capacity of the body for heat will be represented by 

P d> Q 
.1 “ dt' 

Moreover, as changes of temperature produced by the addition 
of heat usually involve other changes in the physical state of a body, 
it is necessary to distinguish different kinds of specific heat. In the 
simplest case of a fluid or a solid subjected only to uniform external 
pressure, two kinds of specific heat are distinguished according to 
whether the pressure p or volume v is kept constant. 

Taking for example a unit mass, the specific heat at constant 
volume v is defined by 

subject to the condition v = const. 
The notation 

(dy\ dzV 

\dx)z °T dx 

is commonly used in thermodynamics to denote the differential coeffi¬ 
cient of a variable y with respect to a second variable x when a 
third variable z is kept constant. With this notation the specific heat 
at constant volume is defined by 

Similarly the specific heat at constant pressure is defined by 

The ratio of the specific heats is a quantity frequently occurring 
in physics, and will be represented by % so that 

(6) % In. 
Y* 
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12. Latent Heats of Expansion. The latent heat of expansion of 
a simple substance at constant temperature is the ratio of the heat 
communicated to a unit mass of the substance to the increase of 
volume if the temperature remain constant; in other words, it is 
given by 

m ' l-0; 
Similarly the latent heat of pressure-variation at constant tempe¬ 

rature is given by 

<8> l--0, 
and we notice that for a given small change, which must be iso¬ 
thermal, dq is the same in both expressions, and the relation between 
dp and dv is determined by the isothermal equation of the substance, 
so that 

The latent heats here referred to must not be confused with 
the latent heat of transformation connected with the passage of a 
substance from the solid to the liquid or from the liquid to the 
gaseous phase. 

13. The Coefficient of Cubic Expansion at constant pressure p is the 
ratio of the increase of volume, expressed as a fraction of the total 
original volume, to the increase of temperature; in other words it is 
given by 

<“> s-J(SHQ; 
14. The Modulus of Elasticity at constant temperature is given in 

like manner by 

The reciprocal of this is called the compressibility, and calling 
it fa we have 

(Ha) P^-vidp); 
There is also a coefficient of cubic expansion and a modulus of 

elasticity for adiabatic transformations, these being defined respectively by 

(12)- *--*(£),. 
the suffix s denoting that in differentiation the variations must correspond 
be an adiabatic transformation. These coefficients are also often 
called the isentropic coefficient of expansion and modulus of elasticity. 
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15. Changes of phase. The passage of a substance such as water at 
ordinary atmospheric pressure from the solid to the liquid or from 
the liquid to the gaseous state affords an example of a general class 
of phenomena known as changes of phase. If the pressure be kept 
constant, such a change takes place at a certain temperature called 
the temperature, of transformation or temperature of equilibrium; thus 
the boiling point of water is the temperature of transformation from 
the liquid to the gaseous state at normal atmospheric pressure. 

If the temperature is given the change takes place at a certain 
pressure called the equilibrium pressure; in the case of transition 
from the liquid to the gaseous state this pressure is also known as 
the vapour pressure corresponding to the given temperature. 

The different states are particular cases of what are known 
as different phases of the same substance, and the change from 
one phase to the other is discontinuous, the substance passing 
through no continuous series of intermediate states. The quantities 
of the substance existing in the given phases usually vary continuously 
during the process of transformation, and the two phases may be 
maintained in equilibrium with each other for an indefinite time at 
any temperature and pressure at which transformation takes place. 

Thus, let water and steam be in equilibrium in a cylinder with 
a moveable piston kept at constant temperature. If the volume be 
increased, a portion of the water will be converted into vapour until 
the pressure is the same as before, and the phases will then be 
remain in equilibrium; if the volume be reduced, the reverse will 
take place. 

A system in which two or more phases are in equilibrium is 
called a saturated complex of the phases. The name mixture is also 
commonly applied to such a system, *but it is better to apply this 
name exclusively to homogeneous systems in which various substances 
or phases are really mixed, instead of the heterogeneous systems in 
which the phases are separate and distinct. 

From the above explanation it follows that a saturated complex 
of two phases of a single substance can only exist when the pressure p 
and temperature t are connected by a certain definite relation, say 

(13) G(:p,«) — 0. 

The curve which represents this equation in terms of p} t as 
coordinates is called the curve of saturation. 

In the passage of a substance from one phase to another a 
certain quantity of heat is given out or absorbed. The quantity of 
heat X required to transform a unit of mass of the substance from 
one phase to the other is called the Latent Heat of Transformation or 
specific heat of reaction (called by Zeuner the “Warmeinhalt” of the 
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process). If heat is absorbed the substance is said to pass from a 
loiver to a higher phase and conversely. 

The specific volumes of the phases are the volumes of a unit 
mass of the substance in these phases, and will be denoted by vf 
and vu in the case where there are only two phases. 

16. Relation between the latent heat of transformation and the 
latent heat of expansion of the complex. We shall now prove the 
very important relation 

(14) 

connecting the latent heat of expansion of the complex at constant 
temperature with the latent heat of transformation. 

Suppose a quantity dm of the substance to pass from the 
phase vf! to the phase vr, the temperature being kept constant. The 
quantity of heat dQ absorbed is X dm while the total increase of 
volume is dV = (V — vff) dm. Hence 

/ dQ \_ ^ 
\dVJt vr — v" 

By taking the total mass of the complex to be unity it is easily 

seen that the left hand member is equal to which is the quantity 

defined as the latent heat of expansion of the complex, or (§ 12.) 

17. The Specific Heats of the higher and lower phases in the 
state of saturation are the quantities y\ y!r defined by 

dp 
dP 

dqf 
dt 

where d<f, d<f are the quantities of heat required to raise a unit 
mass of the substances in the two phases respectively through a 
temperature difference dt, when the pressure varies in such a way 
that the phases continue in equilibrium (i. e. when the changes of 
pressure and temperature take place in accordance with the equation 
^(ibO^O)- We ma7 thus write ou,. definitions 

18. The Triple Point. When a substance is capable of existing in 
three different phases there exist generally a unique temperature and 
pressure at which all three phases can be in equilibrium with each other. 
This temperature and pressure define what is known as a triple point. 

Thus for water the temperature of the triple point is 0.0074° C 
and the pressure is 0.00614 atmospheres. At this temperature and 
pressure ice, water, and vapour can coexist in equilibrium with each 
other. 
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19. Otter examples of ptase equilibrium. In sulphur we have an 
example of a substance of which two phases, both solid, (monoclinic 
and rhomboidal) can coexist in equilibrium with each other, if the 
temperature and pressure are connected by a certain relation. 

As an example of phase equilibrium in which more than one 
substance is concerned, we may take a saturated solution of any salt 
in presence of undissolved salt,' and vapour of the solvent. The 
solvent may or may not occur in all three phases, in the vapour, in 
the solution, and in the undissolved salt in the form of water of 
crystallisation, similarly the salt may or may not occur in all the 
three phases, since, if volatile, its vapour may be mixed with the 
vapour of the solvent. 

20. The Critical Point. When a gas is condensed by increase of 
pressure at constant temperature it becomes changed into liquid at a 
certain pressure provided that the temperature does not exceed a 
certain limit. If the temperature is greater than this limit, no sudden 
change takes place. This property was first discovered by Cagniard 
de la Tour in 1822 and studied by Andreios for carbon dioxide (002). 
The limiting temperature at which the distinction between the liquid 
and gaseous phases vanishes is called the critical temperature, and the 
corresponding limiting value of the pressure of liquefaction is the 
critical pressure. 

If the existence of a critical point be assumed, it is always 
possible to transform a substance from one phase to the other by a 
continuous series of transformations by suitably heating it above the 
critical temperature during the process. 

21. Point of Maximum Density. When water is cooled at constant 
atmospheric pressure its volume decreases till a temperature of about 
4° C is reached, but any further diminution of temperature causes it 
to expand, a further expansion accompanying the process of freezing. 
The temperature at which contraction changes to expansion is called 
the temperature of maximum density. 

The specific volume is then a minimum for variations in which 
the pressure remains constant so that 

(16) (£)-« and (£?)_>«. 



CHAPTER n. 
CLASSICAL TREATMENT OF THE FIRST AND SECOND LAWS. 

22. Equivalence of Heat and Work. Till the end of the 18th 
century it was commonly believed that heat was a substance, which 
was called caloric, igneous fluid, or Phlogiston, although there are 
to be found attempts at a kinetic theory, according to which beat 
is attributed to molecular motion, in the writings of Hooke, Descartes, 
Locke and others. 

In 1798 Count JRumford described experiments at Munich on the 
heat produced by the boring of cannon; finding that the thermal 
capacity of the borings was the same as that of the metal of which 
the cannon were made, he inferred that the heat was not taken from 
the borings and therefore could not be a material substance, and he 
was thus led to believe that heat was nothing else than motion. 
About the same time Davy produced heat by rubbing two pieces of 
ice together and melting them, although the thermal capacity of 
water was greater than that of ice. The new view received so little 
support, however, that Fourier in his Theorie de la chaleur (1822) 
still held to the materialistic view regarding the nature of heat. 

The first determinations of a numerical relation between quantity 
of work and quantity of heat were published by Robert Mayer, of 
Heilbronn in May 1842, and by James Prescott Joule of Manchester 
in August 1843. 

Among the various experiments performed by these writers we 
may quote Joule’s well known determinations of the heating effects 
produced by the friction of fluids. A quantity of water in a. closed 
vessel was agitated by a rotating paddle set in motion by a falling 
weight, and Joule thus* determined the work - quantity required to 
raise the temperature of the water by a given amount. Other 
experiments were made by Mayer and Joule on the heat produced 
by the compression of gases, and later experiments have been made 
on the heating effects produced by electric currents, as well as by 
various other methods. 

The agreement between the results obtained by these different 
methods is as close as could be expected when errors of experiment 
are taken into account, and we are thus led to the so-called Principle 
of Equivalence, First Law of Thermodynamics, or Mayer-Joule 
Principle according to which: 

When heat is transformed into work or conversely work is trans¬ 
formed into heat, the quantity of heat gained or lost is proportional to 
the quantity of work lost or gained. 
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23. The Absolute Unit of Heat. Just as Newton’s Laws of 
motion afford an absolute quantitative measure of force, so the First 
Law of Thermodynamics gives us an absolute measure of quantity 
of heat. The dynamical or absolute unit of heat (introduced by 
Rankine) is that quantity of heat which is the equivalent of a unit 
of work. In the C. Gr. S. system of units the dynamical unit of heat 
is therefore the erg. This unit of heat will always be used in 
future in the present work unless the contrary is stated. 

The so-called mechanical equivalent of a given unit of heat is 
the number of units of work that must be transformed into heat in 
order to produce that unit of heat or its equivalent effect. Its value 
depends on the units adopted for the measurement of work and heat 
respectively, and it is commonly denoted by the letter E or J. From 
the experiments of Joule, Him, and others it is found that if heat be 
measured in small calories and work in ergs, J is equal to about 4.18 x 10.7. 

If heat be measured in dynamical units the mechanical equivalent 
becomes equal to unity, and the equations of thermodynamics assume 
a simpler and more symmetrical form. 

It is to be observed that from this stand-point the measurements 
of the mechanical equivalent of a calorie assume a new meaning. 
For from the definition of a calorie it follows that its mechanical 
equivalent is the number of work units of heat required to heat the 
unit of mass (a gramme) of water through 1°, and this number 
therefore now represents the specific heat of ivater. 

24. Conservation or non-conservation of heat. While the principle 
of conservation of energy shows that the total energy gained, by a 
body is equal to the energy supplied from without in the form of 
work or heat, (or any other form of energy which may exist), properly 
the fact that energy supplied in the form of work can be withdrawn 
in the form of heat, and that under certain limitations the reverse 
process is possible, illustrates the fact that no definite portion of the 

, energy of a body can be called work and heat respectively, and we i shall never in Thermodynamics speak of a body as .containing a 
definite quantity of heat. 

There are however a great many ordinary phenomena to which 
the old caloric hypothesis is perfectly applicable, and it is so common 
to think of a body as containing so much heat that we must examine 
why such ideas, though thermodynamically erroneous, lead in many 
cases to consistent results by simplified methods. . 

_- If energy only passes to and from bodies in the form of heat, 
the caloric hypothesis will of course give perfectly correct results, 
and there will be no error arising from speaking of the total energy 
of a body as the quantity of heat contained in it. 
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Now this is approximately true in dealing with ordinary solid 
or liquid bodies at atmospheric pressure, owing to their small coeffi¬ 
cients of expansion and large specific heats. 

For example, if one gram of water is heated from 0° C to 100° C 
at atmospheric pressure, its volume increases from 1 to 1.045 c. c. 
and the work done in expansion, if this pressure is 10,000 dynes per 
square centimetre, is 450 ergs, or only about 0.0000001 of the energy 
required to raise the temperature of the gram of water by 1° C 
(taking 4.18 x 107 as the value of the specific heat J). This 
exemplifies the fact that in bodies other than gases the work of 
expansion is usually negligible in comparison with the energy required 
to produce measurable changes of temperature. 

Thus the somewhat vague term “quantity of heat contained in * 
a body” in common use probably means in many cases the same as 
the more precise thermodynamical term “intrinsic energy”. But the 
word heat is used in such a vague way to denote temperature, 
quantity of heat, or indeed mere coefficients of thermal capacity 
such as latent heat and specific heat, that it has ceased to have any 
precise meaning. ' 

25. The Second. Law. While any quantity of work can be 
transformed into heat by friction or otherwise, it is generally im¬ 
possible to transform the whole of the heat again into work, and 
the former transformation is for this reason said to be irreversible. 
As an instance of this property we have the common steam engine, 
in which part of the heat produced by the combustion of the coal 
is carried off by the escaping steam, or is absorbed by the condenser 
in a condensing engine, and this portion of heat is not transformed 
into work. 

The exact law determining the maximum quantity of heat which 
can be converted into work by any machine depends on a principle 
which was first enunciated on the materialistic view of heat by Sadi 
Carnot in 1824, and was discussed from the same stand point by 
Clapeyron in 1834. Its correct form and significance for the 
dynamical theory of heat were made clear by Clausius in a paper of 
1850 and by Lord Kelvin in a paper of 1851. 

The principle thus discovered is known as the Principle of Carnot- 
Clausius or the Second Law of Thermodynamics, and it is virtually 
contained in the following axiom: 

Seat cannot pass from a colder to a warmer body without some 
compensating transformation talcing place. 

26. Carnot’s Cycle. If we have two bodies II and K maintained at 
constant unequal temperatures t{ and t2 (tx > L), an indefinite amount 
of work may be obtained from them by means of a third intermediate 
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body S, by causingtHs^bod^ to undeig^ a^ser ^ ^ call# 

formations of the kin • tor and S the working substance. This 
the source X the refng , mass 0f gas contained in a cylinder 

latter may *'***.'*£’ an(fit must he capable of being brought 

[rt.U‘ LU -a B 01 x 'ae process 
four parts. t temperature ta and is brought, 

witt® % rs * £,. *«*-*» <, b,-**>• 
mechanical actions (e.g- in thermal contact with the source H 

mi f »«, 
remains constant olid equultoq body is allowed to fall to 4 (by 

(5) The temperature of tbe >>ooy ^ 

erpansiob) without it. r““™« t with &e cooler K and 
(4) Tbe system >» brought ““ ^ wtial stat. (i. e. tbe same 

its state is allowed to chon obtained. In this 
volume as at tbe commencement)^ . Kltsin quantity of beat 

0., is given to the cooler. 
If S is a simple system, charac- 

z \p ft . n terized by the variables p, V (§ 6) 
r r the cycle will be represented geo- 

metrically by a curvilinear quadn- 
\ \ lateral ABCD. In the first process 
\ \ the characteristic point will describe 
-A>0\ an adiabatic line AS, in the second 

an isothermal line SC, m the third 
an adiabatic line CD, and in the 

-—-----^ v fourth an isothermal line DA. 
0 The work W done in the cycle 

is represented by the curvilinear area 

ABCD and by the Mayer-Joule Principle it is equal to the lost 

temperature t, from the cooler, (2) undergoes mhabatm*“*“ce 
its temperature is tx, (3) imparts Q, at temperature t, to sowce, 
and (4) is brought back to its initial state by an adiabatic trans 

formation which reduces its temperature to 4* n . *. . 
In this case a quantity of work Qx-Q, is converted mto heat, 

the area encircled by the representative point in describing © 

lateral being negative, 
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Carnot’s cycle is the only perfectly reversible process by which 
work can be derived indefinitely from a single source and refrigerator 
maintained at given constant temperatures. If, owing to imperfect 
thermal contact such as occurs in practice, a difference of temperature 
occurs between the working substance and the source and refrigerator 
respectively when heat passes between them, or if the intermediate 
transformations are not perfectly adiabatic owing to radiation, or, 
again, if the expansions and contractions of the intermediary system S 
are retarded by friction, viscosity, or such resistances, the resulting 
cycle is irreversible. 

27, Efficiency of a heat engine. The efficiency of a heat engine 
or motor is defined to be the ratio of the quantity of work produced 
to the quantity of heat absorbed from the source, and hence if Q{ and 
Qs are the quantities of heat absorbed from the source and given to 
the refrigerator, expressed in work units, the work done is Qt — 

and the efficiency is ^ 77 ^ • 
Vi 

From the Clausius axiom we now deduce the following: 
Of all heat motors working behveen given temperatures that which 

is perfectly reversible has the greatest efficiency. 
Let M and N be two heat motors, and if possible let N be 

perfectly reversible, and let M be more efficient than N. Let the 
two motors have the same source and refrigerator, and let the 
motor M transform heat into work, while N, performing the reverse 
cycle, transforms this work back into heat. Then since M is 
more efficient than N, the quantity of heat absorbed from the source 
by M is less than the quantity which N would have to absorb to 
perform the same amount of work, and is therefore less than the 

* quantity of heat N gives to the source when N performs the reverse 
transformation. Hence the source receives more heat than it loses, 
and since no work is performed on the whole, this heat must be 
taken from the refrigerator. Thus heat passes from a colder body 
(the refrigerator) to a hotter body (the source) without work being 
absorbed. But this is contrary to Clausius’ axiom. Therefore M 
cannot he more efficient than N. By similar reasoning we may also 
show that all reversible motors ivorlcing between the same temperatures 
have the same efficiency. 

It follows that the efficiency 1 — f? of every such reversible 
Vi 

transformation between temperatures tx and is the same; this 
efficiency must therefore be a function of the temperatures only. 

Hence 
Vi 

(17) 

is a function of tx and /2 only and therefore we may write 

BRYAN, Thermodynamics. 
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Kow suppose, instead of a single cycle, we take two working 
substances S± and &>, one performing a cycle between the temperatures 
t and t> and the other performing a cycle between U and 4? so that 

1 ' the heat ft given out by S1 at tem- 
perature t2 is absorbed by S2 at that 
temperature. This combinations of 
two cycles is represented graphically 
by a figure like Fig. 4, and since 
its only ultimate effect is to take a 
quantity of heat ft from the .source 
at temperature 4 and give a quantity 
of heat ft. out to the refrigerator 
at 4 its efficiency must be equivalent 

to ttat of a single 
cycle acting bet¬ 
ween t and 4* 

Thus 

ft 
ft 

r 
Fig. 4. 

and therefore for all values of tv t2 and 4 

| = f&> 

I = 4) 

Hence 

(18) 

4) 4) * 4; 4)- 

(19). tr — f(*v 4): 

Now let 4 t>e put equal to a constant C while 4 and 4 are 
left variable. Under these conditions the constant temperature tB 
may be omitted from the expressions f(tvtB) and f(t2,tB), and these 
expressions may be written'go(4) and <p(t2) respectively, that is 

: yft.) 
9(4) 

28. Absolute Temperature. The form of the function q)(t) will 
depend on the scale of measurement of temperature intervals. We may 
therefore chose this scale so that <p (t) is proportional to the temperature 
T, or cp(t) = JcT, where h is constant. If this assumption be made, 
T is said to be the absolute temperature, and the equation gives 

(20) = ft_^} ft_^ 
• ft ^ ft Tt9 ft ~~ Ts * 

Hence we have the following definition. 
The absolute temperature is a quantity defined by the property 

that the absolute temperatures of two bodies are proportional to the 
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quantities of heat lost by one and gained by the other in a perfectly 
reversible cyclic transformation in which the bodies play the part of 
source and refrigerator. 

The unit absolute temperature still i*emains undetermined, and 
for this the degree Celsius is usually taken, so that the difference of 
absolute temperature between the freezing point and boiling point of 
water becomes equal to 100 degrees. Under this assumption it is 
found from experiment that the absolute temperatures of the freezing 
and boiling points of water respectively are proportional to 273 and 
373, hence these temperatures must be called 273 and 373 degrees 
approximately. In this sense it is commonly said in experimental 
treatises on heat that the temperature of the absolute zero is — 273°C. 

The gas-scale of temperature is very approximately but not 
actually identical with the absolute scale, as will be seen later. 

is 

or 

29. Carnot’s Function is.a quantity g such-that the efficiency of 
a reversible engine between temperatures t and t ~ 8t when 81 

mr 

infinitesimal is gSt. It therefore equals of equation (19) 
1- ** . ^ UJ 

equals if T is in absolute units. 

In the earlier writings of Carnot, (Hapeyron, Thomson, Tail, 
and Itanhine, a different method was employed. Consider the limiting 
case of Carnot’s cycle when the area AB( !JD becomes an infinitesimal* 
parallelogram, the iso¬ 
thermals A J), CB corre¬ 
sponding to tempera¬ 
tures t, t — 8t, and the 
heat taken from the 
source being 8Q. Let l0 
be the latent heat of 
expansion at tempera¬ 
ture T, so that CS V is 
the quantity of heat 
required to increase the 
volume of the working 
substance by 8 V at 
constant temperature t. 
Then 

• work done in complete cycle area A BC D *- area FBCE (Fig. 5) 

=» BF - BQ. 

Now BF = St where v is kept constant in and BQ — ®® 

whence * ’ '* 

work of the cycle — ST®® - 

&)$ 
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But this by definition equals [iSTSQ. Hence 

(21) = 

By the Second Law p is a function of t. If the temperature T be 

absolute, p, = — and (21) becomes 

dp _ h dp _ -j 
3T~~T 0r WIy[T~~lt‘ 

This result will be obtained later by analytical methods. 

30, Lord Kelvin’s “First Scale” of Absolute Temperature. Before 
the present scale of absolute temperature had been introduced, Lord 
Kelvin, in 1848, suggested a scale based on the assumption that 
p = 1. If # is the temperature on such a scale we obtain 

d& = pdt (referred to any arbitrary scale) 

= (referred to the present absolute scale) 

whence (23) & = lognat T 4- const. 
The temperature on the “first scale”, S' is therefore equal to 

the logarithm of the absolute temperature plus an arbitrary constant. 
This scale will be found to possess the following peculiarities. 

(1) The “absolute zero” of the ordinary scale is represented by 
= — oo. 

(2) The indeterminateness of the unit of absolute temperature is 
represented on this “first scale” by an indeterminateness in the 
position of the zero, which indeterminateness is introduced above in 
the constant of integration. Obviously if we take this constant to 
be zero (as we naturally should) S' = 0 when T = 1. 

(3) The temperature T has been stated above (§ 28) to be 
approximately proportional to the volume v of a unit mass of gas at 
constant pressure. To this degree of approximation, 

& = log v + const., 
whence 

The left hand side is defined (§ 13) to be the coefficient of cubical 
expansion of the gas. Hence on the “first scale” the coefficient of 
cubical expansion of any gas would be approximately equal to unity. 

chapter m. 
TRANSFORMATION OF THERMAL COEFFICIENTS. # 

31. Formulae which are independent of thermodynamic hypo¬ 
theses. The yarious coefficients defined in Chapter I are not all 
independent, but are subject to certain relations. Some of these 
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relations are independent of the First and Second Laws of thermo¬ 
dynamics, and it is therefore desirable to deduce them outside 
the portion of this work which deals with the principles of thermo¬ 
dynamics proper. They may be described in reference to this 
characteristic as non - thermodynam ical formulae, by which it is to 
be understood that they would still be true even if the first and 
second laws did not exist, provided that the existence of the concepts 
heat and temperature were assumed. If the existence of temperature 
be regarded as a corollary of the Second Law of Thermodynamics, 
as it should be from the theoretical aspect, these formulae will be 
to that extent dependent on thermodynamics. They do not assume 
any hypothesis as to the equivalence of heat and work. 

The conditions imposed in the definition of the thermal coefficients 
of a substance may be now more definitely expressed by the statement 
that the small transformations under consideration are reversible, that 
no changes occur in the chemical constitution of the system, and 
that the only changes which take place are those specified in the 
definitions or formulae. 

32* Case of a simple system. Of the three variables p, v, t any 
two suffice to determine the state of a homogeneous fluid (taken 
as a type of a simple system); and for each such system there is 
an equation connecting these variables, of the form f(p} v, t) » 0 
determinable by experiment. By differentiation 

Hence 
?'f 

(g)- — and two similar 

dp 
whence 

(25) 

and 

/<I?a ^ | au(j two similar 
\dv/t \dph 

(26) 
(dp\ /dv\ fd t\ ^ 
\dv)t\dt/p\dp)fi 

Again the added heat dq can he put1) in the forms 

(27) dq = fvdt -f l„dv} 

(28) dq <= Ypdt + Ip dp 

according to whether t and v or t and p are independent variables, 
fp, Ip, lP being the specific and latent heats defined ^n §§11, 12. 

Eliminating dt from these two equations we obtain 

1) It is here assumed that no uirreversible conversion of work into heat” 
or other irreversible process is occurring in the interior of the substance. 
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(29) dq ■■ rPlvdv~yvlpdP 

Vp-Yw 

' so that if jp and v are taken as independent variables and if 

(30) dq = Mdv + Ndp 

the coefficients M and N are not new quantities but are given in 
terms of the previous ones by the expressions 

y l y l 

(31) pc v X' 

dv 

Again changing the independent variables from v, t to t in 
(27) we obtain « ~ 

dq = ytdt ■+ lv 

and comparing with (28) 

(32) + 

The reverse transformation of (28) leads to 

(33) y.-y,+ *,§?, §f 

In virtue of (25, 26) the two last relations are immediately 
deducible from the previous two. 

7 _ 7 
h— 

33. For an adiabatic transformation, dq-= 0, giving 

dv = — j-dt, dp^-7fdt / 

whence denoting the corresponding differential coefficients by suffix s 

(34) 
fd p\  Yp  YP fdp\ , 

jdv)s~~ yjp ~~~ yv \dv]t 

and therefore with the notation of § 14, 

(35) 
*t Y» 

% 

i. e. the moduli of elasticity for adiabatic and isothermal transformations 
are in the ratio of the specific heats at constant pressure and volume. 

Again we have such formulae as 

(36a) 

(36b) 

34. Generalisation for any number of variables. The above results 
depend on the fact that if we have two independent variables the 
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relations between the small variations in any quantities dependent on 
them can be expressed in terms of the partial differential coefficients 
of these variables. Thus, taking v and t as the independent variables 
above, the relations between the differentials dQ, dp, dv, dt are all 

$jp d p 
expressible in terms of the partial differential coefficients y-? ^ 

-S-> of which the two last are denoted by l0 and y0. 
dv ot 

The general formulae of which these are particular consequences 
may be worked out as follows. 

Let a system be defined by n independent variables; or coordinates 
xlf x2, . . . xn, the “state of the system” being known when definite 
values are assigned to these variables. 

Let dy17 dy27 . . . dym be variations in certain other quantities 
associated with the system; these variations being completely determined 
when the values of xv x27 . . . xn and their variations dxl3 dx27 . . . dxn 
are known. The quantities dy17 dy2, . . . dym need not be the perfect 
differentials of actual functions y17 j/2, . . . ifm the coordinates (for 
instance dQ in thermodynamics is not the perfect differential of a 
function Q of the coordinates). 

In defining any differential coefficient say ~|l- it is necessary 

that n — 1 variables shall be kept constant. The ordinary partial 

differential coefficients are defined by the condition that the 

remaining n — 1 independent variables x27 'x^7 . . . xn are constant, but 

it is also possible to calculate c\y on the supposition that dy27 

dyd7 . . . dyn vanish (if there are n or more yr $), or again on the 
supposition that some of the dy and some of the dx differentials, 
n — 1 altogether in number vanish. 

If r — 1 of the differentials dy27 • . . dym are put equal to zero, 
then n — r — 1 of the variables x17 x27 . .. xn must be made constant 
and the general type of differential coefficient will be 

/%i\ 
\dxjy^ , y, , . . . yr , Xy + i . . . Xn 

We have the following equations 

dy'=dXi+§ doca -1- • • • + dxr J 

0=: p£dx>-+ wt dx*J'-1- dx‘- ()x„ 

0 = , Syr dy. 
dx, ̂ dx1 + j^dx2+--- + Hr 

d x„ (lxr. 'i 
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Employing the notation of functional determinants we o 

elimination , n, ^ 
8 (2/*, 2/s, • * * vr) ___ 7 ^ 

^ d (x2 #r) 1 'd (fi 1 xi 1 ^8 ’ * ■ ' *lr) 

0T 8 (2/i 1 2/a, • - • ?/r) 

• _ ^ (^11 * * • a r j 

0 \dx1 ]y2, 2/3, 2/r ■ rr+1 . • . ^(2/2 * * • Vi) 
d(%2. -.«*,.) 

and the value of d/s subject to the same equations of cum 
a 2/1 

evidently the reciprocal of this. 

We may also have to find such differential coefficient 

or clh subject to n — 1 equations of condition. 
sJ 

Let - be required on the hypothesis that y$7 • 
Cv OSq. t 

constant and %r+i ■ ■ ■ xn constant, then we obtain 

d(y., !/s. • • • ?/,•) 

(dxi\ = _ fC**’®*’•••">). 
' ' \dxJy.Xj y3,... ?/r, 8(2A», 2/a, • * * 2//0 ^ y3,... yr, *>+1 • • • *n 8 2/in ’ ; * 2/,*) 

0(<&i, a*,, . . . «v) 

Again if “ be required on the hypothesis that ;//3, ; 
w 2/^ 

are kept constant and x17 Xy+i ... xn constant we get 

8(2/n 2/s, 2/-P • • * Vr) 

(dyA _ *r) . 

^ \dyjxi, 2/s, 2/a, * - - 2/r, yr-f-1 * ' * 8 (&, 2/:n 2/41 * * * 2/r) 

8 (^21 ‘ * ' **>) 

34a. Case of two independent variables. The ease wh 
are only two independent variables tj and several dependent 
%, y, 0 .. . is of so frequent occurrence in the thermodyi 
simple systems7 that we give below the necessary formulae 
formation for this particular case: 

1 __ dx __ ^ - 

dx/n 

dx 

(40b) 

/dfi\ _1__ ^ _ 'dn 
Uy/x2=3 fd 7]\ dx 

Ui/x H 

(40c) . 
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d(x, y) 3x By OX By 

(40 d) 
/dx\ 

(?) ~ 

y) _ 
0 y 

= £1 d rj dr\ 
d y 

n 

\dx)y t]r\ 07] 

B (x, z) fix ds d x Bz 

(40 e) 
/d x\ 
\dy)s ~ 

.1 
(dy\- ~ 

d(S, n)_ __ 
Hy, sj ~ 

= 

? y 
d 7\ 
dz 

d 7] 
?) y 8s’ 

\dx)z ^(1, n) n d rj d 7i BZ 

Of these the first three are the ordinary formulae of the diffe¬ 
rential calculus, and the fifth can be obtained from the fourth by 

dividing hy The fourth is proved geometrically in most 

books on thermodynamics as follows. 

Let | = f(x, y), r\ — cp(x, y), and consider the curvilinear parallelo¬ 
gram ABCB bounded by the curves 

/'(»>!/) = £7 f(%, y) = l + d£, Cp(x,y) = y, tp(x, y) = y + dy. 

If the coordinates of 
A, B, C, 1) are yx) (x,ys) 

(HAi) we have 

d x 
^2 = x\ + (iri, 

, () x 7 j. . d x , 
•^ = ^1 + at y<iy, 

l+gg 

and the area of the paral¬ 
lelogram ABOI) is twice 
the triangle ABB or 

- (A - *1) (&-&), 

that is $ & d y {) y '<) x' 
" * “ »£ r) Gl 0 7] 

Again if we wish to express say we notice that 

is the length of the horizontal line A.K intercepted between the 
curves f(x7 y) | and f(x, y) =» | + d|. Complete the parallelogram 
AKLB and draw perpendicular on JBL. 

Then 

~ ^ ~ AKLli-**■*- ®*t- Cl\<‘v 

and comparing the two expressions for the area, (40d) follows at once. 
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By applying similar methods to (d ^ we obtain 

' /da.\ dy (dx\ (dy\ = xdl, 
Vdi/y"cr\~~ \dij!l"d£ \dt)x dr\ \dn)x 8S, 'd£dy drjH 

35. Other illustrations. As a further example of the mere use 
of the Calculus, let us discuss the effect of variation of pressure on 
the temperature of maximum density of water. 

Take p and t as independent, v as dependent variable. Then at 
the point of maximum density 

(16) W >0. 

Differentiating the first we have o 

dtdp 
dp + 

d2v 
w dt 0 

as the condition that the state p + dp, t + dt shall also be a state 
of maximum density. This gives for the variations of the temperature 
and pressure of maximum density the relation 

(42) 

d* n 

/dp\ _ dt* 
\dt)max. dens. d2V 

dt dp 

In virtue of (16), the denominator is equal to 

(43) d /I dv\ 
V dt\v dpjt 

v 
dt 

where fSt is the compressibility, at constant temperature (§ 14) and 

~ therefore has the same sign as 

It follows that the temperature of maximum density decreases 
as the pressure increases if the compressibility (it decreases as the 
temperature increases, which is the case for water. Moreover by 

_ • 

observing jj- and the relation • between volume and temperature near 

the point of maximum density, the ratio can be found. 
CL C 
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CHAPTER IV. 

RECAPITULATION OP CERTAIN PRINCIPLES OP RATIONAL 

MECHANICS. 

36. Characteristics of a Rational Dynamical System. Thermo¬ 
dynamics is a branch of physics which treats of certain properties of 
the Universe which cannot be deduced from the principles of Rational 
Mechanics without some further assumption. 

Before enunciating the fundamental axioms which may be regarded 
as the definitions of a thermodynamical system, it is necessary to 
recapitulate briefly the properties which characterise the systems 
usually considered in Rational Mechanics. (Holonomic systems.) 

Whatever views be held as to the best axioms to take as the 
foundations of dynamics we may say, for the purposes of our enquiry 
that a rational dynamical system is defined by the Hamiltonian system 
of differential equations 

JJ7 dPr dU 
dt dt d qr r* 

In these equations: 
(1) The only independent variable is the time t. 
(2) There are any number (say 'n) of dependent variables qr called 

the position coordinates and an equal number of dependent variables 
pr the generalised momenta or impulse coordinates of the system. 
The state of the system is said to be defined when the values of t 
and the 2 n variables qr . . . pr ... are known. 

(3) The expression 17, which is called the energy of the system 
is a known function of the dependent variables pr ... qr .. .. 

This function is of the form U = L + V where L is a homo¬ 
geneous quadratic function of the impulse coordinates pr, and V is 
independent of these coordinates. L is the kinetic energy and V 
the potential energy of the system. Both the coefficients in L and V 
may in general involve the position-coordinates qr in any form 
whatever, and the particular system under consideration is characterised 
by the particular forms of the functions L and V. 
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(4) The quantities Tr, called the generalised force coordinates are 
usually functions of the quantities hy which the state of the system 
is defined, according to the nature of the problem. When the 
quantities Pr .. . vanish, the system is said to he isolated. 

(5) The principle of action and reaction may he regarded as 
embodied in the statement that every non-isolated system is part of 

a larger isolated system. 
The external forces Pr acting on any finite portion So f the 

universe being due to actions and reactions between this portion and 
neighbouring portions, must be derivable from the mutual energy 
of "these portions and S, and by extending the system so as to 
include all those bodies which exert actions on S, the forces Pr will 
be eliminated just as the mutual actions and reactions of the particles 
of a rigid body are eliminated in forming the equations of motion by 
D'Alemberts Principle. 

37. Dynamical and granular theories of the Universe. By a 
proper choice of coordinates many typical phenomena may easily be 
brought under the scheme of the last article. .We may instance the 
electric and magnetic phenomena occurring in a system of bodies 
which are either perfect conductors or perfect insulators, and in 
which no magnetic hysteresis occurs. 

If it be possible to bring all physical phenomena under this 
scheme, then we have a dynamical theory of the Universe. 

A further simplification occurs if it be possible to reduce the 
system to a collection of isolated mass-points, devoid of rotatory 
inertia, moving in accordance with Newton’s Laws, and attracting or 
repelling each other with forces which are continuous or discontinuous 
functions of the distance between them. A medium formed of such 
mass-points might be called a Newtonian or granular medium. The 
medium considered by Prof. Osborne Reynolds1) is of this character. 
It will be seen that for such a medium, taking xr, yr, to be the 
coordinates of a grain and |r, ^r, the corresponding impulse 
coordinates, the expressions for the energy must assume the forms 

2 
,Sra +V+?r 

2 in 

F= 22Fr, {[(xr— Os+ (yr — y,)s+ {ssT — ^)2JY} 

and if further the grains are to be alike in all respects mr must be 
the same for all grains, and the function Frs the same for all pairs 
of grains. 

1) Scientific Papers vol. III. 
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38. The Principle of the Conservation of Energy. Now every 
system included within the scheme of § 36 obeys two fundamental 
laws, which are known as the Principles of Conservation of Energy, 
and Reversibility. 

To obtain the former, consider an isolated system, satisfying 
the equations 

dpr __ dTJ 
dt dpr ’ dt d qr 

d ^ ct ^3 

Multiplying the former by the latter by —and summing 

for the different variables we have 

whence 

(45) 

fdU du_ &Zr\ 
\dpr dt d qr dt J 

0, 
dU A 

e. -rr = 0 (It 
'/ 

U = const. 1/7 

If the system is not isolated we have 

(dJL^M?JL 1 vP dqr 

Ydpr dt dqr dt) ^ Zirr dt 

which when integrated gives 

(46) Prdqr= 0 * 

or the gain of energy U2 — U± in any time interval is equal to the 

external w.ork — 2JPrdqr done on the system. 

39. Localisation of Energy. The property, that the equations of 
motion of different parts of the universe (e. g. different bodies), which 
are not completely isolated, can be worked out independently of the 
rest by equations of the above form involving the introduction of the 
notion of “impressed forces”, depends on the fact that the coordinates 
of an isolated system can often be divided into groups corresponding 
in general to different bodies, A, E, C of the system, but not excluding 
from the investigation different portions of the ether when such are 
taken into account, these groups being usually characterised by the 
following properties: 

(1) The kinetic energy usually takes the form 

(47) ^ T^Ta+Tb+Tg 
A, L l 

where TA is the kinetic energy of A or kinetic energy located in A, 
and depends oh the position and velocity coordinates of A and not 
on those of the other parts E, C} . . . This not necessarily true in 
dealing with electric phenomena, where we may have to take account 
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of mutual kinetic energy. In the case of the mutual induction of 
two circuits we have an instance in point and the equations of 
motion of the two circuits are interdependent and cannot he separated. 

We shall assume such exceptional cases excluded where they would 
invalidate our arguments. 

(2) The potential energy takes the form 

(48) yA+rAB+VB + - 
where VA is the potential energy located in A fVAB the mutual 
potential energy of A and JB. 

Taking qA, qB} . . . to he types of the coordinates of the parts 
A} JB, .. then in any change 

dV. 
(49) 2^dg_A^dVA „ 

is the increase in the potential energy of A, and is a complete 
differential, VA being a function of the coordinates qA. 

dV 
(50) 2-^du-dWA 

is the external work done by the body against the external forces 
which are given by the type 

(51) P Wab 

dZA ' 

In the case of two bodies in contact the actions and reactions 
are equal and opposite, and in any motion the displacements of their 
points of application are equal. In such cases as this the works done 
on the bodies are equal and opposite so that 

dV dV 
(52) S-^dqA+ Z^-dqB=-dWA+ dWB^Q. 

0 9.J. 0 ag 

In other cases as where actions at a distance occur 

(52a) sT^dqA+ Z-^dqB~dVAB 

gives the increase of mutual potential energy of the two A, JB bodies; 
and this is equal to the algebraic sum of the works done by the bodies. 

This mutual potential energy may he regarded as located in the 
medium by which the forces are transmitted from one body to the 
other. With this assumption all energy may he regarded as located 
either in separate bodies or in the ether. 

By the intrinsic energy of the body A is meant only the kinetic 
and potential energy located in A, that is UA, where 

(53) UA ==: Ta “f" VA. 
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The principle of conservation of energy may now be written 

34) (IUa~\~ d WA ~ 0 

r the decrease of intrinsic energy is equal to the work done by the body. 

40. Reversibility. In the next place the motions of a dynamical 
fstem possess an important peculiarity which is expressed by saying 
rat they are perfectly reversible. 

We may illustrate the meaning 
f reversibility by considering the 
lotion of a projectile under gravity 
lone. Let a body be projected 
:om A with velocity U at an ele- u 
ation a, and in any time T suppose w 
; to describe the arc AB, arriving / 
t B with velocity V making an u 
ngle /? with the horizon. Then we / 
now that if the body is projected ^ 
romC^L with a equal velocity V in 
he opposite direction it will retrace 
;s steps over the same parabola, 
nd will after a further interval T 
eturn to A with a velocity U equal 
nd opposite to the original velocity 
f projection. We may therefore 
ay that the parabolic motion of a 
rojectile is reversible, meaning that 
orresponding to any motion, which 
re may call a direct motion, a re- 
ersed motion is possible in which U 
he projectile retraces its steps, 7* 
escribing the same path backwards, 
iking the same time over the same arc, and passing through the 
ime points with equal and opposite velocity. 

On the other hand the motion of a projectile in a resisting 
ledium is irreversible. Thus if in the direct motion the medium 
xerts a retardation proportional to the square of the velocity, a 
^versed motion which is an exact counterpart of the direct motion 
ould only be obtained by postulating an acceleration proportional to 
i© square of the velocity, whereas in reality a retardation would 
gain be exerted by the medium. 

If the differential equations of motion of a system be expressed 
i terms of the position coordinates only as dependent variables, the 
lotions which they determine will be perfectly reversible if the 
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equations of motion are unaltered by writing - dt for it, that is if 
thev only involve even powers of dt m the differential coefficients. 
Thus motions uniquely determined hy the differential equations m a: 

(55> ' &+ *(*)'+*-° ' 

are reversible, while those determined by 

(56) *£ + fl*f + 6*-0 

are irreversible.*) 
The equations of rational mechanics always represent reversible 

motions, provided that (1) the kinetic energy is a homogeneous 
quadratic function of the velocity or impulse coordinates and (2) that 
the external .forces are functions of the position coordinates only. 
To prove this it is most convenient to take the equations in the 

Lagrangian form 
d / dL\ £L d V  -p 

St \JTr) ~~ %% ~~ r* 

41. Physical unreality of reversible processes. In Nature all 
phenomena are irreversible in a greater or less degree. The motions 
of the celestial bodies afford the closest approximations to reversible 
motions, but motions which occur on this earth are largely retarded 
by friction, viscosity, electric and other resistances, and if the relative 
velocities of the moving bodies were reversed, these resistances would 
still retard the relative motions and would not accelerate them as 
they should do if the motions were perfectly reversible. 

Irreversibility may be either statistical or actual. If the molecules 
of a body form a rational dynamical system satisfying the conditions 
of § 36, the changes which take place would be perfectly reversible, 
if in reversal, the velocity of every molecule of the system were 
reversed. As however it is impossible to control the motions of 
individual molecules, the phenomena which can be observed in such 
a system by means which we are able to command may take the 
form of irreversible. effects. In such a case the system is statistically 
irreversible. On the other hand if the motions of the ultimate parts 
of the system (atoms or molecules) are themselves irreversible we 

1) When — is positive equation (55) represents the motion of a particle 

under a force to the origin varying as the distance, subject to a retardation 
varying as the square of the velocity. But in a resisting medium the motion is 
not uniquely defined hy equation 55 for as soon as the velocity becomes negative 
the equation of motion is changed to 

(dx\2 
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have a case of actual irreversibility, and the changes in the system 
can no longer be represented by assuming the conditions of § 36. 

The hypotheses that not only are the phenomena of nature only 
statistically irreversible but that the universe is a rational dynamical 
system with the properties of § 36 are confirmed by many results 
of the Kinetic Theory of Gases. But whether the reversibility is 
actual or statistical, a dynamical scheme which takes account of motions 
of individual molecules is far too elaborate and minute to be employed 
in all practical calculations relating to the phenomena observed in 
nature as irreversible. It therefore becomes necessary to formulate 
a new scheme, and the simplest way of doing this is by the introduction 
of additional variables not conforming to all the conditions of § 36. 

42. Available Energy. If a system is statistically Irreversible in 
the sense here considered, and its ultimate parts conform to the 
properties of § 36, the system will satisfy the Principle of Conservation 
of Energy, so that as long as no energy is supplied to the system 
from without the total energy will remain constant. But only a 
limited portion of this energy will be capable of being utilised for 
conversion into mechanical work. For in order to utilise the whole 
of the kinetic energy of the molecules, it would be necessary to reduce 
each molecule individually to rest. The impulses which would have 
to be applied to the molecules would be exactly half those necessary 
to reverse the motions of the system. The process is impossible 
in reality. Maxwell however gave the name demon to a hypothetical 
agent capable of controlling the motions of individual molecules, and 
with this nomenclature, statistical irreversibility consists in the property 
that “Maxwell's demons’' exist only in imagination and not in reality. 

We are thus led to the conclusion that under any given conditionsi 
only a limited portion of the energy of a system can be converted 
into mechanical work. This portion is called the available energy of 
the system subject to the given conditions. In order, however, to 1 
completely define the available energy of a system, it is necessary 
to specify not only the external conditions to which the system is \ 
subject, but also the means at our disposal for converting energy 
into useful work. 

43. A parallel in mechanics. Owing to the Earth's rotation 
about its axis and its orbital motion about the Sun, the Earth 
possesses an enormous store of unavailable energy. The only mechanical 
energy which is available, is that depending on the relative displacements 
and motions of bodies on the Earth’s surface. It is in general Im¬ 
possible to influence the Earth’s motions as a whole, for this would 
necessitate producing equal and opposite reactions on some other body. 
Hence it is impossible to draw on the store of energy contained in 
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these motions. An exception occurs in the case of the tides which 
are produced by action and reaction between the Earth and the Moon 
and Sun, and which may to some extent be utilised for driving 
machinery in suitable places. 

Generally (a) if one imagines an isolated system of bodies moving 
freely through space with a common uniform velocity, the mechanical 
energy which is available without going outside the system is zero, 
but if the parts of the system are in relative motion among them¬ 
selves the available energy will be the amount of work that can be 
obtained by reducing the system to a state of uniform translation 
combined with rotation in a configuration of stable relative equilibrium1) 
without altering its linear and angular momenta. 

On the other hand (b) if a system is in the presence of a very 
large uniformly moving body or base such as the earth, its available 
mechanical energy is the amount of work that can be produced in 
making its velocity the same as that of the large body. 

Cases (a) and (b) have their parallels in thermodynamics in the 
cases of an isolated system of unequally heated bodies and of a 
system in the presence of a large body of uniform temperature, as 
we shall see later. But the problems are essentially distinct and in 
Thermodynamics, we shall not as a rule find it necessary to take 
account of the unavailable mechanical energy considered in this article. 

44. Dependence of available energy on external conditions. In 
the dynamical illustration of the preceding paragraph it will be seen 
that the available energy of the system depends not only on the actual 
state of the system, but also on the external conditions to which 
the system is subjected. Thus if the system is moving with velocity 
V in the presence of a base moving with the same velocity, none of 
the kinetic energy of the system is available for conversion into 
work, and the only energy which is available is the potential energy. 
The total available energy is therefore a minimum. On the other 
hand a system at rest may become a source of available energy when 
brought into the presence of a moving base and the amount of this 
available energy (apart from any potential energy due to the mutual 

actions of the body and base) is easily seen to be ~ m V2 where m 

is the mass of the system. 
Lastly, if we have two bases moving with different velocities it 

is possible to generate work indefinitely by bringing a third body 
alternately under the influence of the two bases. 

1) If the configuration of stable relative equilibrium is not uniquely 
determined by the momenta, that configuration must be selected which has the 
least energy. 



AVAILABLE ENERGY. - DIFFERENTIAL ELEMENT^ 
! 

The thermodynamical analogues of these properties, whit, 
be discussed more fully later, are that if a body is surrounded n 
medium at temperature T the total available energy is a minimum 
when the temperature of the body is T] that a cold body may \ 
become a source of available energy in the presence of a hotter one, 
and that work may be generated indefinitely by bringing a body 
alternately into the presence of a hotter and colder medium, as in 
Carnot’s cycle 

45. Another illustration. A mass of gas can do work by 
expanding and it therefore possesses energy which in the process of 
expansion is converted into work. But if the gas is surrounded by 
a medium at constant pressure the only available energy is the work 
which would be done by the gas in expanding till its pressure is 
equal to that of the medium. Again, a vacuum or a region containing 
gas at a lower pressure would become a source of available energy 
in the presence of such a medium. Lastly for several gases surrounded 
by a closed envelope the available energy would be the work done 
in expanding till the pressure was uniform throughout the interior 
of the envelope. [We may suppose for the sake of simplicity that 
the pressures of the gases are functions of their volumes only and 
that the temperature is everywhere constant. This assumption 
enables us to omit tempei*ature altogether from our equations and 
consider the phenomena in their purely dynamical aspect.] 

4(5. Differential elements. In studying the dynamical properties 
of extended distributions of matter, the conception of a differential 
element is frequently introduced. Thus, in order to define the density 
of a substance, when variable, we take a volume-element (tlxdydg) 
enclosing any point (x7 y, i) of the substance, then if the mass of 
this element is Qdxdy d$ and the dimensions of the element are 
suitably chosen, q will represent the density of the body at the 
point (x, y, $). Similarly in defining pressure of a fluid at a point, 
we take a plane surface-element dS containing the point and suppose 
the thrust on it is pdS, then if the dimensions of the element are 
suitably chosen, p will be the pressure at the point. 

The difficulty in these definitions arises from the fact that 
mathematical theory requires the element in either case to be infinitely 
small while physical considerations require it to be infinitely great. 
It is only by taking the element infinitely small compared with the 
dimensions whose measurements we are considering that the methods 
of the differential and integral calculus become strictly applicable, and 
that the measures of density and pressure tend to approach limits 
which are independent of the size of the elements of volume and area. 
On the other hand if matter is made up of-molecules, density and 
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pressure have no meaning as applied to elements of molecular 
dimensions, and it is only by taking the respective elements infinitely 
large compared with the corresponding spaces occupied by individual 
molecules that the measures of these quantities become independent 
of the effects of individual molecules. 

The property that infinitesimal analysis can be applied to the 
solution of many problems in dynamics or other branches of mathe¬ 
matical physics, involving space distributions of matter, is explained 
by the extreme smallness of the space occupied by each individual 
molecule in comparison with bodies which are regard as “of finite 
size’5. This smallness is illustrated by the fact that in a cubic 
centimetre of gas there are about 5.4 x 10iy molecules. It is there¬ 
fore possible to choose an element of length, area, or volume so small 
that it may regarded as infinitesimal for purposes of analysis and yet 
so large in comparison with molecular dimensions that its structure 
may be treated as homogeneous instead of molecular. 

Such an element we shall define to be a “differential element” 
of volume, mass, area or length as the case may be.1) We notice 
that similar considerations also lead to the conception and definition 
of a differential element of time, which shall be small compared with 
the times (such as a second) during which finite motions of finite 
bodies take place, and large compared with the time intervals defined 
by the motions of individual molecules. 

The difference between thermodynamics and the kinetic theory 
(statistical mechanics), is that the former branch of study seeks to 
investigate certain properties of matter in terms of their effects 
considered with respect to differential elements of time and space as 
a whole, while the latter seeks to investigate the progress of events 
within these individual elements themselves. 

CHAPTER V. 

GENERALISED CONCEPTIONS OP ENERGY. 

IRREVERSIBILITY. 

47. The notion of energy in its most general aspect. From 
considerations such as those briefly indicated in the last chapter, it 
can be seen that the principles of rational mechanics * (at any rate 
apart from statistical methods) can be only applied to explain pheno¬ 
mena that are both conservative and reversible. 

1) The term physically small has also been ■ suggested for such elements 
and is used by Leathern, “Volume and Surface Integrals used in Physics’1, p* SL 
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Ill order to deal with irreversible phenomena and in particular 
with the class of phenomena falling under the head of thermo¬ 
dynamics, it is necessary in the first place to introduce a broader 
and more general conception of energy than suffices for the study 
of the particular class of phenomena included under Rational Dynamics. 

The following statements may be regarded in the light partly of 
a definition of energy, and partly of an enunciation of its properties 
which are assumed as fundamental. 

There is a certain entity called energy which is characterised by 
the following properties: 

(1) In an isolated' system the total quantity of this entity always 
remains constant. 

(2) The energy of a system cannot be changed ivithout some real 
physical changes talcing place in the state of the system. 

(3) The Icinetic and potential energies of dynamics arc partiadar 
forms of this entity. 

The first statement is the Principle of Conservation of Energy, 
and it leads to the following conclusions. 

If the energy of a finite non-isolated system or part of a 
system changes in amount, then changes of equal but opposite amount 
must occur somewhere outside the system or part considered, so as 
to make the total amount unaltered. 

According to (2) if the physical state of a system is completely 
defined by certain variables, the energy is a function of those variables 
only, and does not depend on the past history of the system previous 
to attaining the state in question. 

On the other hand, if the state of the system is defined so far 
as certain physical phenomena are concerned by certain variables, 
and' we have evidence, from the existence of irreversible phenomena, 
or from any other cause, that energy changes have occurred in the 
system which are independent of the changes of these variables, we 
infer that the variables originally assumed are not sufficient to 
completely determine the physical’ state of the system, but that this 
state depends on some other variables as well. 

48. Observations. In connection with the above statements we 
notice the following points: 

(1) The energy of an isolated system is not the only quantity 
which remains constant. The components of momentum also remain 
constant, but the energy is the only quantity which possesses the 
property of being wholly or partially transformable into the forms 
of energy defined in Dynamics. 

(2) As it is impossible to conceive or realise a state of aero 
energy, it is necessary to include an unknown constant in the expression 
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for the energy. But this constant, though unknown, is perfectly 
definite and unchanging in value, and thus the principle of conservation 
of energy is not made less definite by its presence. 

(3) Under the general term physical state of a system, we include 
such data as the positions of its parts, its state of rest or motion, 
the chemical constitutions of the various parts of the system, its 
state of electrification and magnetisation, its state of stress or strain 
and other properties. We establish Thermodynamics on a footing 
independent of preconceived notions as to heat by assuming that 
the list of variables by which the state of the system was defined, in 
the first instance, excluded all reference to the phenomena of heat 
and temperature. Under such circumstances experience shows that 
phenomena occur indicating changes of energy which are independent 
of the variables originally postulated. We conclude that the original 
choice of variables was not sufficient to completely specify the 
physical state of the system. (^It then becomes the object of Thermo¬ 
dynamics to investigate the additional changes of physical state 
postulated by experience, and to discuss ^ their representation by a 
suitable choice of variables and formulae. ! 

49. Irreversibility. If a system passes from a state A to a 
state B th'e change is said to be irreversible when the system cannot 
pass of itself back from the state B to the state A, and can only be 
made to do so by the action of outside influences. 

In connection with irreversible phenomena the following axioms 
have to be assumed. 

(1) If a system can undergo an irreversible change it will do so, 
. (2) A perfectly reversible change cannot take place of itself; such 

a change can only be regarded as the limiting form of an irreversible 
chmge. 

We shall call a transformation positive, when that transformation 
tends to take place of itself; the reverse transformation will then be 
negative, so that a negative transformation cannot take place of itself. 

Since the total quantity of energy is by hypothesis constant, 
any change which occurs and which involves energy may be regarded 
as implying a transformation of energy from one form to another. 
If then a system undergoes an irreversible transformation from the 
state A to the. state B this energy of the system is necessarily less 
capable of being transformed into other forms of energy in the final 
state than it was in the initial state. 

For every state C of the system which can be reached by 
starting from the state B can also be reached by starting from the 
state A and passing through the state B. On the other hand, if in 
passing from A to B by any irreversible process, the system passes 
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through any intermediate state D, the state D can be reached by 
starting from A, but can not be reached by starting from the state B. 

If then we use the term availability to designate the extent to 
which the energy of any given system in any given state is capable - 
of being transformed into other forms of energy, we may regard it; 
as a self evident truth that in any irreversible transformation there is < 
a loss of availability. 

50. Compensating transformations. When a transformation AB i 
of a given system 8 is in itself irreversible and therefore positive, ( 
the reverse or negative transformation BA can nevertheless (sometimes j 
at any rate) be made to take place by the introduction of a com- I 
pensating transformation. The meaning of this will be made clearer 
by considering in the first instance the simple mechanical illustration 
of two weights connected by a pulley in such a way that when one 
rises the other falls. Each weight tends to fall to the ground but 
it can only do so by raising the other weight. The weight which 
preponderates will raise the other. If neither weight preponderates, 
there will be equilibrium, and a slight disturbance one way or the 
other will determine the direction in which the system moves. 

Now let U be a second system capable of performing a positive 
transformation CI), and let the systems be combined together in such 
a way that the positive transformation CD can only take place 
simultaneously with the negative transformation BA and vice versa. 
Then if the two simultaneous transformations BA, CD taken as a 
whole constitute a positive transformation, this transformation will, 
if it can, take place of itself by axiom (1) above, and will be irre¬ 
versible; if the combined transformation is negative the reverse trans¬ 
formation will, if it can, take place of itself, and the system 2 will 
undergo the negative transformation DC while S undergoes the 
positive transformation AB. In the limiting case when the opposite 
tendencies of the systems exactly balance each other, there will be 
no tendency for the combined system to undergo transformation in 
one direction more than the other, and a transformation in either 
direction will be perfectly reversible. In this case a positive trans¬ 
formation of one system is said to be compensated by a negative 
transformation of the other. 

In reality this limiting case can never be actually realised 
because loss of availability must necessarily take place in the connections 
by which the two systems are bound together, or elsewhere. 
We may exemplify this point if we think of the mechanical illu¬ 
stration of two equal weights hanging by a string passing over a 
rough pulley. Although the weights theoretically balance one another 
a considerable effort must be made to overcome friction in order 
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to move the system in either direction. Again, in order that the 
system may move of itself, the descending weight must exceed the 
ascending one by an amount depending on the friction of the pulley. 
Still, if one irreversible physical phenomenon can be reversed by 
coupling it with a different irreversible phenomenon,, we know that 
the irreversibility is comparable in the two phenomena, and that it 
is at least theoretically possible to adjust the magnitudes of the two 
changes in such a way as to make them compensate each other. In 
this case we may say that in both transformations the irreversibilities 
are of the same hind or convertible. 

51. Availability measured in terms of energy. When a number 
of irreversible transformations are of the same kind, it is possible to 

v make quantitative comparisons of their irreversibility or loss of 
A availability by choosing as the compensating transformations, changes 

in which energy is transformed from one particular form to another 
Jess available form, the initial and final forms being the same in 
bach case. The quantity of energy so transformed in the transformation 
required to compensate any given irreversible transformation will 
then afford a numerical measure of the irreversible changes connected 
with the given transformation. We may thus replace the words 
“loss of availability” by the more precise wording “quantity of 
available energy lost”. In order to make this measure a definite one 
it is necessary to specify what is meant by available energy, i, e., 
when energy is available and * when it is not, and this necessarily 
depends on the assumed conditions under which energy is trans¬ 
formable from one form to another. 

There is of course no a priori reason for asserting that all the 
irreversible phenomena of the Universe are of the same kind, as it 
is possible to conceive transformations which bear no relation whatever 
to each other. If such exist, they must be discussed separately, and 
cannot be made the subject of quantitative mathematical investigations 
common to them. It must be regarded as the result of experience 
and not as a self-evident truth that a very large class of actual 
physical and chemical phenomena lend themselves to investigation by 
the methods described in this book. 

52. Availability of known forms of energy a matter of experience. 
We now see that the Principle of Irreversibility as applied to energy 
phenomena, naturally leads to the conceptions of availability, and of 
available energy, provided that these conceptions are defined exclusively 
with reference to the power of transforming energy from one form 
to another. In order to build up a theory which will account for 
the irreversible phenomena of our universe, it is necessary to appeal 
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to experience when we attempt to identify the available energy thus 
defined with different forms of energy with which we are familiar. 
We are thus led to assume the following axiom which may be 
regarded as the simplest form of the Second Law of Thermodynamics: 

Energy in the form of mechanical work is always wholly convertible 
into any other forms of energy to which the present theory is applicable, 
but the converse processes are not in general possible. 

From this axiom, it may be seen that: 
The available energy of a system subject to given external conditions 

is the maximum amount of mechanical ivorh theoretically derivable from 
the system without violating the given conditions. 

We may regard this statement coupled with the statement that: 
In all irreversible transformations available energy is lost} never 

gained 
as constituting a fundamental law of nature which we shall call the 
Principle of Degradation of Energy. Either of the two statements 
may be regarded as a definition of available energy, and the other 
statement will then be an axiom based on experience. 

The necessity of the appeal to experience is manifest from the 
following considerations: If in our Universe events occur in a certain 
definite sequence, it is possible to conceive a universe in which events 
occur in the opposite sequence, by merely reversing the scale of 
time. In such a universe the transformations of energy would be 
exactly the opposite to those of which we have experience, and the 
forms of energy which are least capable of being converted into other 
forms in our Universe would become the most convertible. In stating 
this it is assumed that the individuals living in either universe possess 
the power of influencing the progress only of future events and 
possess a knowledge only of past events. This assumption is impli¬ 
citly involved in all our ideas relating to irreversibility. 

53. Theoretical and practical limitations to conversion of energy. 
In practice a system may often possess a considerable amount of 
energy which is easily recognisable as mechanical, potential or kinetic 
energy, although it would be very difficult to devise mechanisms for 
employing this energy to drive machinery. Thus when a ship goes 
through the water a large amount of energy is expended in setting 
up waves and vortices and is still recognisable as mechanical energy, 
although it is practically impossible to recover tbis energy or to 
apply it to a useful purpose. Energy of vibration or of sound waves 
may be taken as another instance. There is thus an apparent difficulty 
in drawing the line between energy which is, and energy which is not 
directly convertible into mechanical work. To overcome this difficulty 
it will probably be at least sufficient for our present purpose to 
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agree to classify under the title mechanical energy all those forms of 
energy which occur in the study of reversible rational mechanics. 
This would include the energy of wave motion and vortex motion 
referred to above; since these forms of energy occur in the reversible 
dynamics of a perfect fluid. They become associated with irre¬ 
versibility when the fluid is assumed to be .viscous, and then the 
effect of viscosity is to absorb, or rather convert them into less 
available forms in accordance with the principle of .degradation of 
energy. Again if we introduce the conception of differential elements 
as introduced in § 46 the energies due to the motions of such 
elements as a whole, and to strains in the elements which in - the 
limit may be regarded as homogeneous, will all be of the nature of 
mechanical energy. 

In most problems in thermo dynamics we are able to assume 
that such forms of energy as those of wave motion or vibration 
have been transformed, and that the mechanical energy of the systems 
is either due to simple homogeneous strains, or is, at any rate, a 
function of a small number of independent variables. In such cases 
it is easy to draw the line between the energy which is and that 
which is not wholly available. 

54. Qualitative nature of irreversible thermodynamics. The 
principle of degradation of energy merely deals with the direction in 
which energy transformation tends to take place and makes no 
statement as to the rate at which the change proceeds. The study 
of the rates of change is necessarily based on experiment; no 
general laws can be enunciated, and each transformation has to be 
studied in detail as in the theories of friction, viscosity, conduction 
of heat, law of electric resistance, and other phenomena. Hence 
irreversible thermodynamics is in general a purely qualitative and 
not quantitative study, and its phenomena are represented by inequalities, * 
not equations. When, however, we pass to the study of reversible 
processes by treating them as the limit of irreversible ones, the 
inequalities of irreversible thermodynamics become equalities and the 
results become quantitative. The same, is the case, frequently, when 
we consider the ultimate distribution of energy in a system that has 
been left for such a long time that no further, irreversible changes 
can occur. 
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CHAPIEE YL 

THE CHARACTERISTICS OF A THERMODYNAMICAL SYSTEM. 

THE NOTION OF TEMPERATURE. 

55. Characteristics of a thermodynamical system. We are now 
led to the consideration of conservative and irreversible systems in 
which degradation of energy takes place in such a way as to diminish 
the amount of energy utilisable in the form of mechanical work. 
Even this statement allows considerable latitude in regard to the 
general character of the phenomena occurring in such systems, and 
further assumptions are necessary in order that the .system should 
reproduce the effects observed in the experimental study of heat. 

At the outset we shall confine our attention to endeavouring 
to account for such irreversible processes as might be conveniently 
characterised as “thermo“mechanical” phenomena. By this we exclude 
all chemical actions for the present, and indeed until Chapter XV, 
where such actions are treated for the first time. Moreover, we limit 
ourselves until Chapter X to discussing energy changes in a system 
of material bodies. By this we do not exclude the. possibility of 
energy passing by radiation from one body to the other, but we assume 
that the bodies are so near together that the passage may be regarded 
as instantaneous, and the quantity of energy in transit in the inter¬ 
vening ether may be neglected. 

We commence by supposing the system divided into differential 
elements of mass dm occupying differential elements of volume 
dxdydz subject to the conventions contained in the definitions 
of § 46. 

There are two methods in which degradation of available energy 
may take place in the system: 

(a) by changes which take place entirely within the mass-elements 
(dm) without energy being transformed from one element to another; 

(b) by changes in which energy passes from one mass-element 
to another, or more generally from any portion of the system to the 
other, where such changes cause a decrease of the total amount of 
available energy. 

Now there are certain processes in Nature, such as the friction 
of fluids, in which available energy is absorbed according to method 
(a) within the volume elements themselves. Such processes are 
commonly spoken of in text books on Theoretical Mechanics as non¬ 
conservative. They can be equally well explained, as is indeed generally 
done in these books, by restricting the term “energy” to dynamical 
energy, kinetic and potential. In this case it is commonly stated 
that “energy is lost” in the system, meaning that “available energy 
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is lost”, and the phenomena occurring in the system can often be 
adequately discussed without making enquiries as to what becomes 
of this lost energy. 

• If energy were unable to pass from one portion of a system to 
another otherwise than by the performance of mechanical work, only 
the available energy could be so transferred, and any energy rendered 
unavailable by irreversible changes in an element would remain 
permanently locked up in that element. If the unavailable energy 
thus accumulated were not to affect the physical properties of the 
element, this energy would be completely lost, and we should have 
no evidence of its existence or of the truth of the principle of 
conservation of energy. On the other hand if the accumulated 
unavailable energy were to affect the physical state of the element, 
we should have a state of affairs in which the properties of all 
bodies were continuously changing and no body could ever be brought 
back to its initial state by any external agency whatever. Such a 
condition of affairs is contrary to our experience. 

We are thus led to postulate a system in which energy can pass 
from one element to another otherwise than hij the performance of 
mechanical worh. 

56. Still confining ourselves to the consideration of purely 
hypothetical systems, it is again possible to postulate any one of 
the following assumptions with regard to this assumed transference 
of energy. 

(1) The whole of the energy so transferred is, under all conditions, 
unavailable for transformation into mechanical work. 

or (2) The transferred energy is partly available and partly unavailable, 
but the transference does not alter the quantity of available energy 
present in the system as a whole. 

. or (3) The transference of energy tends, in general, to decrease the 
total quantity of available energy present in the system. 

If assumption (1) be made, the transferred energy can be dis¬ 
regarded in considering the progress of dynamical events in the 
system, and the dynamical phenomena will be identical with those 
of a non - conservative system such as is considered above. 

If assumption (2) be made, the available and unavailable portions 
of the transferred energy may be considered separately. The trans¬ 
ferences of the available portions may, by a proper choice of coor¬ 
dinates, be represented by the equations of rational dynamics, in 
which case the transferred energy assumes the form of work done 
by the variation of the coordinates so chosen j and if the unavailable 
energy be neglected, we are left with a system which is again equivalent 
to the same non-conservative system as before. 
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In thermodynamics we shall find an illustration of this very 
point. So long as only reversible transformations are considered we 
shall find that the equations of thermodynamics are identical in form 
with the equations of dynamics with the addition of an extra position 
coordinate (the entropy) and its corresponding generalised force 
coordinate (the temperature). 

We are thus led to adopt assumption (3) as the simplest charac¬ 
teristic feature of a system which cannot be better represented by 
the equations of non-conservative dynamics. 

57. We accordingly define a thermodynamical system as one 
possessing the following properties distinguishing it from the systems 
considered in rational mechanics. 

(1) Its energy is not a function of the position coordinates and 
the corresponding generalised velocity components alone; but is capable 
of undergoing independent variations. 

(2) These variations consist in transferences of energy between 
different parts of the system or between the system and other systems, 
in conformity with the principle of conservation of energy. 

(3) These transferences of energy are distinguished from those 
considered in rational dynamics, in that they are in general accompanied 
by a loss of available energy, and are therefore in general, by the 
principle of degradation of energy, irreversible. In the systems of 
rational dynamics all energy is available and all transformations are 
reversible. 

(4) As in § 39, the total energy may be expressed as a sum of 
terms representing respectively the parts of the energy which are 
located in different bodies and in the ether. 

58. Quantity of Heat. Definition. When energy flows from one 
system or part of a system to another otherwise than by the perform¬ 
ance of mechanical work, the energy so transferred in called heat 

If the energy of a body increases by d U while the body at the 
same time performs external mechanical work of amount dW, the 
body is sai<| to receive a quantity of heat dQ, defined by the relation 

(57) . dQ = dU+dW. 

This relation thus affords a definition of the quantity of helat 
absorbed or emitted by a body. It is to be observed that we cannot 
speak of the quantity of heat contained in the body. 

For if the body undergoes a cyclic transformation so that its 
initial and final states are identical it must have the same energy at 
the end as at the beginning. But it does not necessarily follow that 
the algebraic sums of quantities of heat absorbed and of work done 
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by the body are each separately zero. What we do learn by integration 
of (57) is that since the total energy is the same at the end as at the 

beginning [i. e. since (f^dU — 0] therefore 

(58) (/)<!<) 

or the total quantity of heat absorbed is equal to the total quantity 

of work done in the cycle, the sign (J*) indicating integration taken 

round a complete cycle. If we were to imagine the body at every 
instant to contain a definite quantity of heat, this quantity would be 
greater at the end than at the beginning of the cycle by an amount 

(J)d Q? and either it would be implied that there was some difference 

between the initial and final states — such difference being contrary 
to the definition of a cycle, — or the statement would be meaning 
less. The other alternative, that of assuming that a cycle could only 

exist in which (f)dQ and (f)dW were both zero would imply an 

independence of heat energy and work energy, which is not only 
contrary to experience, but which would fail to account for degradation 
of the latter form of energy. 

If, instead, we consider a change of the system from a state A 
to a state J5, and let Ua and UB denote the energy of the system 
in the two states, we have 

(59) 

From what has been said above it follows too that d Q and d W 
are not themselves perfect differentials but that their difference 
dQ — dW is a perfect differential of the function U which is the 
energy of the system. 

J 59. When two bodies act thermically on one another the 
I quantities of heat gained by one and lost by the other are not 

I necessarily equal. 

In the case of bodies at a distance, heat may be taken from or 
given to the intervening medium. 

The quantity of heat received by any portion of the ether may 
be defined in the same way as that received by a material body. 

Another important exception occurs when sliding takes place 
between two rough bodies in contact. The algebraic sum of the 
works done is different from zero, because, although the action and 
reaction are equal and opposite the velocities of the parts of the 
bodies in contact are different. Moreover, the work lost in the process 
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5 not increase the mutual potential energy of the system and there 
.o intervening medium between the bodies. Unless then the lost 
:gy can be accounted for in other ways, (as when friction produces 
trification), it follows from the principle of Conservation of Energy 
, the algebraic sum of the quantities of heat gained by the two 
Les is equal to the quantity of work lost by friction. From the 
srved result of experience that friction tends to decrease the 
bive velocity of the moving parts we can easily prove that this 
L quantity of heat gained is positive. This result is in accordance 
l the principle of Degradation of Energy, although it is not a 
ussary consequence of that principle.1) 

60. Condition of internal heat equilibrium. It follows from the 
ciple of degradation of energy, that any body or system subjected 
;iven external conditions will tend to assume an equilibrium state 
Tiich the available energy is a minimum for all virtual variations 
ie distribution of energy in the system such as could be produced 
leat passing from one mass-element of the system to another, 
out violating the given external conditions. When this is the 
, the system may be said to be in thermal equilibrium or ihermi- 

homogeneous. 
The state of such a system can then only be varied either (a) 

imparting energy in the form of heat to the system as a whole, 
Tiicli case the system will tend to assume a new equilibrium 
ibution, or (b) by variations in the generalised coordinates defining 
dynamical state of the system. 
It follows that if the state of a thermically homogeneous system 
sfined by n variables or generalised coordinates for changes which 
.ve no transmission of heat to or from the system as a whole, 
, when such transmissions of heat are taken into account, n + 1 
,bles will be required to define the state of the system. Since 
passage of heat to or from the body involves gain or loss of 
ry, we may, in the first instance, choose these n + 1 variables 
e the energy U and the generalised p o siti on - co or dinates of the 
m. 
A transformation in which no heat is gained or lost is called 
iidbatic transformation (cf. § 5). If x1P x2, .. . are the gene- 
id position - coordinates, X1} X>, . .. Xn the corresponding gene- 

1) Conceive a hot body placed in contact with a cold one and Blipping on 
here is nothing contrary to the principles of thermodynamics in imagining 
>s heat passes from the hot body to the cold one, a certain proportion of 
night be absorbed at the common surface and employed in increasing the 
re velocity of the sliding parts. Hence the appeal to experience cannot 
pensed with. 

TAN, Thermodynamics. 4 
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ralised. force- coordinates, it follows that adiabatic transformations are 

given by the differential equation 

(60) dU = 2Xdx 

connecting the n -j- 1 independent variables 27, xl7 x2, ... xn. 
In the case of a homogeneous fluid substance (taken as a type 

of a simple system) the state will be completely defined either by 
the total volume V and energy 27 or by the volume and energy oi 
unit mass, which we shall call v, u. If p is the pressure, and we 
adopt the former alternative, then since 

(61) dU = dQ — pdV 

(62) = 0. 

Hence p is known when 27, V are known, and conversely, the 
state of the system is in general known when p and 27 are known. 
For such a system the state may be completely defined by the variables 
p and V or p and v instead of 27 and V or u and v. By the new 
choice of variables, the transformations can be represented by an 
indicator diagram as is explained in § 8. 

61. The Second Law of Thermodynamics. Let M and N be two 
independent thermically homogeneous systems. If the states of these 
systems are such that their total available energy is decreased by 
the passage of a small quantity of heat from M to N, it follows at 
once from the principle of degradation of energy: 

(1) that heat will, if it can, flow of itself from M to N, 
(2) that heat cannot he made to pass from N to M without supplying 

available energy from without. 
If we define one system as being hotter or colder than another, 

according as the available energy of the two is decreased or in¬ 
creased by transporting a small quantity of heat from the first to 
the second, statement (6) is identical with the usual statement of the 
second law which asserts that heat cannot pass from a colder to a 
hotter body without some other change taking place. 

In the limiting case of thermal equilibrium the available energy 
will to the first order of small quantities be unaffected by the trans- 
ference of a small quantity of heat in either direction — a result 
closely analogous to the Principle of Virtual Work in Statics. 

62. The thermal equilibrium between two bodies is independent 
of their relative positions. This important property, though frequently 
overlooked and tacitly assumed in thermodynamical treatises, requires 
somewhat careful consideration. 
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We may in the first place consider two bodies or systems Jf, N9 
which are not both in thermically homogeneous states. Some part 
of M may be hotter than some part of N, in which case if these 
parts are brought into contact or otherwise favourably placed heat 
will pass from M to N, while at the same time some part of M 
may be colder than some other part of so that by varying the 
relative positions of the systems heat may be made to flow from 
N to M. It is necessary to show that such cases cannot occur when 
the bodies are in thermically homogeneous states, provided that the 
displacement merely alters their relative positions and not the con¬ 
figuration of either body. 

Suppose M hotter than N} and suppose if possible that by 
varying their relative positions heat could be made to flow from N 
to M, and that after any quantity Q had thus been transferred the 
bodies were brought back to their initial positions. Thus we should 
have transferred a quantity Q of heat from the colder body N to 
the hotter body M, and by making Q sufficiently small, M would 
still remain hotter than N after the transformation. From the last 
paragraph this result could only take place if available energy were 
supplied from without, and the only way in which such energy could 
be supplied would be by means of work done during the displacement 
of the bodies from the first to the second position and back again. 
This would imply not only that the bodies exerted attractive or other 
forces on each other during the displacements, but that these forces 
were different during the return displacement from what they were in 
the outward displacement. Hence the truth of the proposition to be 
proved depends on the following axiom: 

The attractions between any two bodies depend only on the relative 
positions and configurations of the bodies and are unaltered by the 
transference of heat to or from either or both of the bodies. 

That this axiom, is in accordance with experience affords 
evidence that 

(1) if one thermically homogeneous body is hotter than another the 
same will remain the case when their relative positions are altered. 

Similarly (2) if the two bodies are in thermal equilibrium, the 
same will be true, when their relative positions are altered. 

These results no longer hold if the dimensions or configurations 
of the bodies are altered by the displacement, for example a mass 
of gas which is colder than a given body may be made hotter than 
it by compression. 

68. Carnot’s Cycle. To transport heat from a colder body N to 
a hotter body M (according to the above definition) available energy 
must be supplied from without. The simplest way of doing this is 

4* 
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by processes identical in character with those of Carnots cycle reversed, 
in which an auxiliary body L is taken which first receives heat from 
N, and is then, by compression or otherwise, brought to a state 
capable of imparting heat to M. 

To complete the cycle the body L must then be allowed to 
expand without gain or loss of heat until it is in a suitable state to 
receive a further supply of heat from N. 

To supply the available energy absorbed in a cyclic transformation 
of the auxiliary body a balance of work-energy must be supplied to 
this body in each cycle, and by the principle of conservation an 
equivalent amount of heat-energy must be given to the body if/, over 
and above that taken from N. We may thus suppose a quantity of 
heat d QN taken from N, a quantity d QM given to M7 and a quantity 
of work dA = dQM— dQN performed on the auxiliary body during 
the process. 

The reverse process is identical in character with the direct 
Carnots cycle of § 26 in which dQ}m is received from iff, dQ!N is 
given to N, and work dA1 = d Q1 m— d> Q!n is done by the auxiliary 
body during the cycle. 

Since a combination of the direct and reversed cycles can never 
result in a gain of available energy, the ratio of the work to the 
heat taken from or given to the hotter body M must be greater in 
the cycle in which work is absorbed than in the one in which work 
is generated (compare § 27). In other words, by the well known 
proof of combining the direct and reversed motions, the principle of 
limited availability gives that 

(63) 

and therefore 

(64) dQ'N^ 

dQ'M- 

dA' < dA 

d Q M d VII 

dQy dQ M 

dQi °r dV'.v 
< 

d{)A 

and by considering the limiting case where the combination of the 
direct and reversed cycles is accompanied by no loss of availability 
and the processes are all therefore reversible, we get 

(65) 
maximum minimum 

64. Let each of these limiting ratios be written equal to TMN 
for the bodies M and N. Then the following properties are readily 
shown to be satisfied by the function TMN. 

(1) TMn is constant for the same two thermically homogeneous 
systems in the same two states. It is independent of their relative 
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positions and therefore only a function of the variables by which the 
states of the bodies M and N are separately specified. 

This may be proved exactly as in § 62, and the truth of the 
statement depends on the axiom there enunciated. 

(2) The ratio Tmn for two systems M, N, is equal to the corre¬ 
sponding ratio for any other two systems ill7, N!, of which 
III7 is in thermal equilibrium with M and N1 is in thermal equilibrium 
with N. 

For if Tjnv > TM'n' combine a direct Carnot’s cycle between M 
and JV with a reversed cycle between Mr and N! so that the work 
generated in the former cycle is absorbed in the latter. Then the 
heat received by M will be greater than that lost by Mr and that 
lost by N will be greater than that gained by N!.1) 

Now the heat lost by ill7 may be taken from M and that gained 
by Nf may be given to N without loss of available energy. There 
remains a balance of heat gained by the hotter body M and lost by 
the colder body N which is not compensated for by any loss of 
available energy in any other part of the system, which is contrary 
to the principle of degradation of Energy. Similarly TMn cannot be 
less than 2V v'* 

(3) Tmn is independent of the size of the systems M and N 
provided that they are thermically homogeneous. In the case of 
homogeneous fluids, Tmn is therefore a function of their volumes 
and energies per unit mass, not of their total volumes and energies. 

This result follows from the previous one by observing that the 
ratio in question is the same for any two parts of the same two 
thermically homogeneous systems. 

(4) Tmn is equal to unity when heat - equilibrium exists between 
M and W, it’ is greater than unity when heat can flow of itself from 
M to N, and less than unity when heat can only flow of itself from 
N to M. 

(5) We have the relation 

(66) Tmn x Tnm = 1 • 

This is simply the property of the differential calculus according 
(l Q }I d Q y 

to which -y; “* x 77f = 1. dqN dQy 

1) For by hypothecs dQv— <IQN~ dA, and — dQn* = dA whence 

V 
r. , dQ'tl (l JL djL 

<T<lv 11 * ’ * * T(fN ^ dQ*' 
whence if dA is the same for both cycles dQN^> d(L)f Y and dQfM* 

4 
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(6) Taking a third system P, we have by comparing the cycle 

between M and N with a combination of two cycles between A/ 
and P and between P and N respectively 

TmN = TmP X Tptf — 7p—• 
±hrp 

This is proved exactly as in § 27. 

65. Absolute Temperature. Now let the system P be taken to 
be a standard system whose state is kept constantly fixed, while other 
systems are compared with it. 

The expression TMp will then be a function only of the variables 
which define the state of the system M. 

TMp is said to be the absolute temperature of the body M referred 
to P as unit of absolute temperature. 

If any other body Q be substituted for P, the unit of absolute 
temperature will be altered, but the numerical measures of the tem¬ 
peratures of all bodies will be altered in the same ratio. For by 
(67) above 

TMq = TMp X Tjpq 

in other words the absolute temperature of M relative to Q is equal 
to absolute temperature of M relative to P multiplied by the absolute 
temperature of P relative to Q. Hence all the new absolute tem¬ 
peratures are obtained by multiplying the old ones by the same 
constant factor TPq. 

The properties proved in the last article are identical with the 
properties of temperature proved in treatises on experimental heat 
and mentioned in Chapter I. We thus have a deduction of these 
temperature properties from the Principle of Availability, which is 
independent of any preconceived ideas regarding temperature. 

66. Temperature at a point. When a body is not in a thermi- 
cally homogeneous state its temperature at any point can be defined 
by considering a differential element of mass containing that point, 
in the same way that we define density at a point or pressure at a 
point in hydrostatics. We might, for example, say that the temperature 
at any point P was equal to T, if when a mass element dM con¬ 
taining the point P is removed without changing its physical state 
and placed in contact with a body of uniform temperature P, no 
passage of heat takes place in either direction. 

The property that temperature is a scalar not a vector quantity 
I or that the temperature of matter at a point is the same in all directions 
I follows from the considerations contained in § 62, and depends on 
\ the same axiom. As an instance of this point, if we suppose two 

. . - -? ~~~ 
/I i u ■■ ■■ •, * 
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uniformly heated cubical blocks of material to be in thermal equili¬ 
brium with two of their faces in contact, they will remain in thermal 
equilibrium when any other two faces are brought into contact. An 
exception to this statement could only occur under the conditions 
discussed in § 62. It would require work to be done in turning the 
cubes over into their new positions, and the amount of this work to 
be altered if heat were to flow from one cube to the other. It is 
not to be inferred that when radiation takes place through the ether 
in a particular direction the temperature at a point of the ether is 
necessarily the same in all directions, or even that the ether has a 
temperature, for the above proof only applies to material bodies. 

67. Temperature of moving body. When of two bodies M, Nf 
one is at rest and the other is in motion, or both are moving with 
different velocities, their temperature ratio can still be defined by 
means of an auxiliary body L performing a Carnot’s cycle between 
the two, but in this case the velocity of the body L will have to 
be changed in the course of the adiabatic transformations in such a 
way that when L is in contact with M it is moving with the same 
velocity as M, and when in contact with N it is moving with the 
same velocity as N. 

This definition gives rise to no special difficulties in the cases 
ordinarily occurring in nature. The work done in changing the 
velocity of the auxiliary body being equal to the alteration of kinetic 
energy of the body as a whole, the sum of the works thus done in 
the two adiabatiffS of the cycle is zero. In order that the sum of 
the works should be different from zero it would appear necessary 
that the inertia of the auxiliary body should be altered by communi¬ 
cating heat-energy to it; if such a phenomenon were to exist the 
present arguments would break down. 

We can also suppose heat equilibrium to be maintained by radiation 
between two bodies whose velocities are unequal and which are not 
actually in contact. We here £ssiime that either the transmission of 
heat between the bodies is instantaneous, the heat-capacity of the 
intervening ether being neglected, or that an equilibrium state has 
been attained between the bodies and the ether. (See Chapter X.) 

From considerations such as the above, it is evidently possible 
to define the temperature at a point at any instant in a system whose 
parts are in motion among themselves and are not in thermal equili¬ 
brium; at all events in the majority of conceivable cases. 

A body which is in the course of undergoing shearing strain, 
for instance a fluid, appears to present the most favourable conditions 
for finding .an exception, if such exist, to the property that the j 
temperature at a point is the same in all directions. 
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CHAPTER YII. 

UNAVAILABLE ENERGY AND ENTROPY. 

68. Unavailable energy. The Principle of Conservation of Energy 
involves the result that any loss of available energy implies the gain 
of an eqii&l amount of unavailable energy. But whereas the phenomena 
of Rational Mechanics involve changes in the location of the available 
energy of a system, they do not imply any transformations of 
unavailable energy. Hence in many cases it is simpler to study the 
properties of the unavailable part of the energy rather than those of 
the available portion, for the reversible transformations of energy in 
the form of work do not have to be taken into account. 

In the last chapter we have seen that the ratio of the absolute 
temperatures of two bodies is defined by the relation 

^v *Qn 

where dQx, clQN are the quantities of heat gained by one and lost 
by the other in a perfectly reversible Carnot’s cycle working in either 
direction between the two bodies. In future we shall use the word 
"temperature” to denote absolute temperature unless otherwise stated. 

As the transference of heat between bodies of finite size changes 
their temperature, d Qjx and d Q# must in general be infinitesimal. 
If however the bodies are very large, or are by other means maintained 
at a constant temperature, this restriction may be removed and we 
may write 

(68) ^3/ _ Qm 

where QM, QN are the quantities of heat gained and lost either in 
one cycle or in a number of cycles. 

The maximum amount of work obtainable from under these 
circumstances is 

Qm—Qn or QM(l — -U^j. v/ 

T \ 
The balance QN or 'QM x represents energy given in the 

form of heat to the body at temperature TN, from which no further 
work can be obtained if T^lowest available ‘ temperature.. 
Under this condition QN is to oe regarded as wholly unavailable energy. 
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If we had another body capable of receiving heat continuously 
at a lower temperature T0 we might obtain a further amount of work 

out of the heat QN, and then the balance of unavailable energy Q0 
communicated to the latter body would only be given by 

Qo-Qx^-Q*^ 

and would be the same as if the cycle were performed directly between 
the temperatures TM and T(). 

From these forms we deduce that the unavailable energy associated 
with a given quantity of heat 

(1) is directly proportional to the loivest absolute temperature 
available for a refrigerator 

(2) is inversely proportional to the temperature of the body which 
the heat is entering or leaving. 

63. The auxiliary medium. — Entropy. In the above statements 
we have estimated unavailable energy with reference to a medium 
of constant temperature which can be used as a refrigerator in 
connection with any necessary reversible cyclic transformations involving 
gain or loss of heat. Such a medium may be called an auxiliary 
medium and its temperature the auxiliary temperature. 

If we take a steam engine as a practical illustration we should 
take as auxiliary temperature, the lowest temperature at which water 
could be obtained for the condenser of the engine. The lower the 
auxiliary temperature the less energy unavailable. 

Taking now a quantity Q of heat entering or leaving a body 
at temperature T, we see that if the unavailable energy Q0 associated 
with it be divided by the auxiliary temperature T0 we have 

Qo_ Q • 

or the quotient is independent of the auxiliary temperature. 

Thus may be regarded as a measure of unavailability or factor 

which only requires to be multiplied by any assumed auxiliary 
temperature T0 in order to give the quantity of unavailable energy 
relative to that temperature. 

This factor is called entropy, and may be defined more precisely 
in two ways. 
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70. First definition of Entropy. If a system or part of a system 

temperature T receives a quantity of heat dQ the quotient is 

led the increase of* entropy of the system arising from this cause. 
If A and JB denote two different states of a system which are 

mble of being connected together by a continuous ^series of reversible 
mformations, then the change of entropy of the system in passing from 

state A to the state B is defined by the expression 

z fd4 • - < 
J T - • 

' A 

ere the summation extends to all parts of the system 
taken along the reversible series of transformations referred to. 

This definition is the one most commonly known though it is 
quently stated in a somewhat less precise form. In dealing with 
rersible phenomena it leads to consistent results and is sufficient, 
.t there are many irreversible phenomena, for which this definition 
either inapplicable or can only he made applicable by somewhat 
mbersome extensions. It is in many ways unsatisfactory or at least 
sonvenient. 

71. Second Definition of Entropy. If from any cause whatever, 
1 unavailable energy of a system with reference to an auxiliary medium 
temperature T0 undergoes any (positive or negative) increase and if 

s increase be divided by the temperature T0 the quotient is called the 
irease of entropy of the system. 

As it is only possible to investigate changes of unavailable energy, 
d• not, its total amount, the expression for the entropy involves an 
known constant. This constant occurs in the form of a constant 
integration in any expressions which are obtained for the entropy 
particular systems such as perfect gases etc. In most cases the 

bropy takes the form of a logarithm. 
The second definition makes no restrictions as to the nature of 

5 transformations which take place; it holds if the. unavailable 
ergy is imported into the system in the form of heat received from 
thout, as well as when . irreversible changes occur in the system 
If, producing an increase of unavailable at the expense of available 

ergy. 
The second definition of entropy may perhaps be stated more 

iefly by saying that the entropy of any system is equal to, or differs 
a constant from the unavailable energy of the system relative to cm 

xiliary medium of unit temperature. 

md t) the integral' 

\( 
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72. Clausius’ Inequalities. It follows from the second definition 
that the entropy of a finite system is a function of the physical state 
of the system only, for no change can take place in the amount of 
energy unavailable with reference to a given auxiliary medium without 
some change occurring in the physical state of the system. 

(1) If no irreversible changes occur in the interior of the system, 
unavailable energy is only imparted to the system from without in 
connection with heat received, and it follows from § 70, that the 
change of entropy of the system SB — SA between states A and B is 
given by 

a 

(69) 

(2) If however irreversible changes have occurred in the interior 
then since these changes‘involve an increase of unavailable energy 
the total increase of entropy is greater than that due to the heat 
gained from without, in other words 

(70) 

a 

SIt-SA>Z fd^ * 

and the difference represents increase of entropy due to the internal 
changes. 

(3) If the system undergoes a reversible cyclic transformation then 
since the initial and final entropies are the same 

-r *7 

(71) 2(/)¥ 0, © % 

•' A 
the integral being taken round the cycle. f 

(4) If the cycle involves irreversible changes in the interiof of the 
system (70) gives ^ V » , ,* 

pa) ^(/)f< o. }■« < £ 

In this case the quantity of entropy received from without during 
the cycle in connection with the heat imparted must be negative in 
order to balance the increase of entropy produced by the irreversible 
changes within the system. 

The inequalities (70), (72) are known as the inequalities of Clausius. 
(5) It is not usually possible, however, for a system to undergo 

a reversible transformation unless at any instant all the parts of fche 
system are at the same temperature T, this temperature being a • 
function of the time alone. For if any difference of temperature 
existed between tie parts, heat would, in general, flow from the hotter 

A 

/ 



60 VII. UNAVAILABLE ENERGY AND ENTROPY. 

to the colder parts and this process would be irreversible. Under 
these circumstances we take dQ to denote the heat received by the 
whole system at' the instant when its temperature is T and the 
equalities take the form 

73. A more detailed investigation. We may examine in greater 
detail the processes involved in the proof of Clausius7 inequality for 
a closed cycle as follows.1) 

Let us suppose that we are dealing with any thermodynamical 
system M in the presence of an indefinitely extended medium M0 of 
absolute temperature To, this being the lowest temperature continuously 
available for the refrigerator of a Carnot’s cycle. 

Under these circumstances a quantity of heat dQ at temperature 
T represents a quantity of available energy of amount 

dA^dQ(l~^) 

that being the maximum work obtainable from dQ subject to the 
given conditions. 

It follows, then, that if a quantity of heat dQ is imparted to the 
system from without at a point where the absolute temperature is T> 
the available energy of the system is increased by the above amount 
dA. Again, if the system performs external work dW, this work 
represents available energy taken from the system M and given to 
some outside system on which the work is done. So far as the 
system M is concerned we thus have a loss of available energy dW. 

Hence the quantity of available energy absorbed by the system 
from without in any small transformation 'is 

dA^Z| 

the Z referring to different parts of the system. Now by the First Law 

1) Many articles in this chapter have been written and rewritten a large 
number of times, with the result that a certain amount of repetition occurs in 
some of the arguments, especially in connection, with Clausius’ Inequalities. 
Some of this repetition is necessitated by the two alternative definitions of 
entropy. In other cases it is hoped that the repetition will merely call the 
attention of the reader to the number of different ways of arriving at the 

same result. 
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E(dQ-aw) = azr 
where U is the total energy of the system. Hence the total amount 
of available energy absorbed takes the form 

cl A = clU — 2d Q L- . 

and if the system changes from state A to state JB we get the total 
available energy absorbed 

B 

= Ub-Ua-2 JdQL.- 
A 

If the system is made to undergo a cyclic transformation the 
energy U is the same at the beginning as at the end, and therefore 
if (A) is the available energy taken from without in the cycle 

(73) (A) = - T02 
dQ 
T 

.' z*‘ / ti, o 

the integral being taken round the cycle. This expression is equal 
and opposite to the gain of unavailable energy, as it should be since 
the total gain of energy in the cycle is necessarily zero. 

Now let us apply the principle of degradation of energy to the 
changes which take place in the interior of the system, between its 
different parts. In these changes, available energy is always lost, 
never gained; and it is only in the limiting case of reversible trans¬ 
formations that the loss vanishes. But, at the end of a cyclic 
transformation, the system M is exactly in the same condition as at 
the beginning, and therefore its available energy in the presence of 
the medium M0 must be the same. Therefore available energy must 
have been increased in the system in connection with heat received from 
without to compensate for the loss within, and hence (A) in equation 
(73) must be positive. 

Therefore (1) in any cyclic non-reversible transformation 

This relation is the Inequality of Clausius. 

(2) The left hand member of this inequality is equal to —where 
1o. 

A represents the amount of energy rendered unavailable subject to 
the condition that T0 is the lowest outside temperature available 
for the purposes of a refrigerator. 

(3) The loss of available energy in the cycle is proportional to 
T0. If a colder medium were substituted for M0 we should obtain 
increased facilities for the conversion’ of energy into work, and a 
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proportionately smaller amount of energy would be rendered unavailable 
under the new conditions though the cycle was identically the same. 

The difficulty of understanding Clausius’ Theorems lies; not so 
much in the proof, as in the interpretation of their meaning in the 
case of the different irreversible phenomena with which we have to 
deal in applications. Even the statement of the theorems admits of 
•some ambiguity, for there exist a number of inequalities of the form 

4/)t <0 
obtainable by assigning different meanings to dQ and T. For this 
reason we shall now illustrate the particular cases which occur by 
easy and gradual stages, starting with reversible cycles and then 
considering in detail the simpler classes of irreversible phenomena 
with which we have to deal in practice. 

74. Particular cases. Simple systems. We start with a simple 
system, and first suppose it to be the working substance performing 
a Carnot’s cycle between a source at temperature TM and a refrige¬ 
rator at temperature YV We transform the equation 

d Qji_Tv 
cl Qn T y 

firstly, by letting d Qt, dQ2 denote the heats received by the system 
from the source and refrigerator, so that d-Q1 = dQM, dQ2 = ■— d 
into the form 

. clQt dQ, 
JL 

T ' T 
“VV 

• 0. 

The conditions of reversibility require that when the working 
substance is in contact with either the source or the refrigerator the 
temperatures of the two shall be equal, Letting Y\, T2 denote the 
temperatures of the working substance, so that Tt = Yjf; Y2 = T]sf7 the 
equation last written down transforms into . 

dQi 

Tx 
0 

an equation now involving only quantities which refer to the yrqrldng, 
substance, and not to the source or refrigerator. 

Next suppose the working substance to undergo a reversible 
cyclic transformation, its temperature being any function of the time. 
Let the indicator diagram of the cycle be the curve APBQ. Divide 
this curve into narrow strips by adiabatic lines crossing it and join 
the ends of these adiabatics by isothermals. The diagram is thus 
divided into a series of Carnot’s cycles such as PMQN, and from 

what we have first shown the values of contributed by the 
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elements PM and QN must be equal and opposite so that their sum 
is zero. Passing to the limit when the elements PMQN are in¬ 
definitely narrow, 
we shall now 
show that 

(/)f = o 
the integral being 
taken round the 
circuit APJBQ. 

To prove this 
it is necessary to 
show that the va¬ 
lue of d Q for the 
element of arc 
PPr is ultimately 
equal to the value 
for the correspon¬ 
ding isothermal 
element PM. Using suffixes to denote the quantities of heat absorbed 
in the corresponding elements we see from the principle of energy 
that dQp p* —f- d typ'm ~4~ d Qm p is equal to the work done m the 
elementary cycle PP'JfP; this is represented by the area of the 
A PP!M and is therefore a small quantity of the second order, PP' 
and PM being of the first order. Also dQmp' 0, the transformation 
being adiabatic. Therefore dQpp> + d Qmp = 0 or dQpp‘~ dQPM to 
first order. Hence the cyclic integral 

(/)■¥ 
for the circuit APBQ is ultimately the same as the sum of the 
corresponding expressions for the elementary Carnot’s cycles inscribed 
in it as above, and is therefore zero. 

75. Extension to compound systems^ reversible cycles. We now 
consider a compound system with any number of degrees of freedom, 
whose temperature at any instant is the same at every point, and is 
thereforejyj:un^ In a reversible cycle, the 
position coordinates may be varied in different ways, and consequently 
the proof of the relation 

given in the last article usually breaks down, or at least gives rise 
to difficulties, depending on the impossibility of drawing an indicator 
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diagram and the consequent difficulty of dividing tlie cycle into a 
network of Carnot’s cycles. The following proof is convenient, and 
bears a considerable analogy to the more general proof of § 72. 

Let the system M describe any reversible cycle K and let dQ 
be the heat received by M at • any stage of the process when T is 
its temperature. Then without loss of generality we may suppose 
the quantity clQ taken from an auxiliary body, such as a mass of 
gas, performing a Carnot’s cycle between the system M at temperature 
T and a large reservoir of heat M0 at temperature To. In this case 
the auxiliary body will receive from the reservoir a quantity of heat 
cl Q0 determined by 

dQp __ dQ 

T0 ~ T 

or 

clQo=T0^- 

If, now, we assume that every transformation of the system under 
consideration is connected with an auxiliary Carnot’s cycle working 
in combination with the same reservoir M0, the total amount of heat 
taken from the reservoir in the cycle will be 

ft-!■„(/) f- , 
If this quantity Q0 were positive, a quantity of work Q0 would 

have to be done somewhere or other, since all the bodies have 
returned to their initial state. We should thus have the conversion 
of Q0 units of heat into work with no compensating transformation, 
and in this way all the energy taken from M0 in the form of heat 
would be capable of being rendered available, even if Mo were the 
coldest body of the system. It follows that Q0 cannot be negative, 
and moreover if Q0 is positive the series of processes is irreversible. 
Hence for a reversible series of processes we must have Q0 = 0 and 
therefore 

76. Entropy. — (Definition I.) The property that for a given 
thermically homogeneous system, simple or compound, the integral 

(/)¥ 
vanishes round a reversible closed cycle leads immediately to the 
result that the integral 
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Jh 

f 
d Q 
T~ 

is the same for all reversible transformations 
given initial state A to a given final state B. 
a simple system and 
supposing the integral 
to vanish round the cir¬ 
cuit ABB Q (Fig. 9), it 
follows that the parts 
contributed by the paths 
ABB and BQA are 
equal and opposite, and 
therefore the line inte¬ 
grals taken along ABB 
and AQB from A to B 
are equal, the initial state 

(Pi ^1) an(l final state 
(j^2 ^2) being the same 
for both. 

We may therefore 
write, for a simple system 

of the system from a 
In illustration taking 

0 

Pi 

\B (PZV2) 

£ 
' Q. 

Pz 

Fig. 0. 

(74) j'dS - f(ih, rt) - f(lh, FJ = sB-sA 

and for a compound system we have in like manner 

h 

/ dQ 
— 8b — Sj 

where S denotes a certain quantity dependent on the actual state of 
the system, and SA) SB denote its values in the states A, B. We 
are thus led to associate irreversible transformations with a new 
quantity S whose value at any instant depends only on the state of 
the system at that instant. This quantity we call entropy and we 
are led to the first definition of § 70, which for the systems here 
considered may be stated as follows: 

Let A and B be two different thermically homogeneous states of the 
same system} which are capable of being connected together by continuous 
reversible tram formations. Then the integral 

BRYAN, Thermodynamics. ~ 
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B 

A 

taken along any such transformation is called the entropy of the system 
in the state B relative to the state A, or the difference of the entropies 
in the states A and B, 

The entropy in any state is thus determined, to within an 
arbitrary constant of integration, by the indefinite integral 

J^ + c. 

The constant of integration is to a certain extent arbitrary, but for 
the same substance in the same state (as to pressure, temperature etc.) 
the entropy of unit mass must always be taken to be the same. 

We may also give the following definition: The entropy of a 
thermically homogeneous system is a quantity such that when in 
any reversible transformation the system receives a quantity dQ of 
heat at absolute temperature T the entropy increases by an amount 

— • This is merely a re-statement of the First Definition of Entropy, 

given above. 
It is clear that to produce a given change in the physical state 

of a body of given material the quantity of heat communicated 
must be doubled if the mass of the body is doubled, so that the 
entropy of a body in a given physical state is proportional to its 
mass. The entropy of unit mass, which, in accordance with previous 
conventions we shall denote by s, depends only on the state of the 
substance, as defined e. g. by its pressure and temperature. 

The progress of events within the working substance depends 
on the various temperatures of the substance at different stages and 
the quantities of heat received by it. It does not depend on whether 
the heat is received from a body of the same temperature or a body 
of different temperature provided that the transformation is the same. 
Hence the relation 

and the definition of entropy is extended to all cyclic transformations 
of the working substance, provided that the processes which take 
place in the^ substance itself are reversible. 

77. Connection between entropy and available energy. — Second 
Definition of Entropy for thermically homogeneous systems undergoing 
reversible changes (Definition II). We now revert to the methods 
of § 73, but assume for the present, that the system M with which 
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we are dealing is at every instant at uniform temperature T throughout, 
and that the transformations which it undergoes are all reversible. 
As before, the facilities for conversion of energy into work are 
assumed to be limited by the presence of a surrounding medium Mo 
of temperature T0. 

Under these circumstances the change of available energy in the 
system itself in any non-cyclic transformation from state A to state 
B has been shown (§ 73) to be 

B 

VB- VA~ T0 f 
A 

The total change of energy is UB — bJA. 
Hence the quantity of non-available energy gained by the system 

in transformation is equal to \ 
B 

A 

that is to T0 times the increase of entropy (Definition I). 
We thus obtain the second definition of entropy of § 71, according 

to which the increase of entropy is found by dividing by To the 
increase of unavailable energy estimated with reference to an auxiliary 
medium of temperature To. 

78. Entropy in non-reversible transformations. The extension 
of the first definition of entropy to irreversible transformations is a 
subject of considerable difficulty, which has led to many controversial 
discussions. There is not the same difficulty with the second definition, 
nevertheless it is only possible to arrive at a clear understanding of 
entropy by examining the various possible methods of treatment 
which present themselves, and by a minute consideration of the 
simpler irreversible phenomena. 

We start by laying down the following 

Fundamental Condition. The entropy of a system shall be defined 
in such a way that Us value at any instant depends only on the physical 
state of the system at that instant, and not on the previous history of 
the system. 

If this assumption were not made the theory of thermodynamics 
would involve the consideration of changes of entropy of a purely 
arbitrary character corresponding to no real physical phenomena. 

If, for example, a given mass of gas undergoes any series of 
transformations, reversible or irreversible, and is finally brought back 
to its original volume and temperature, the condition we lay down 
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is that the entropy shall be the same as it was at the beginning. 
The initial and final states of the gas are by hypothesis indistinguishable 
from each other in every respect, and if we made the entropies different; 
this difference would be devoid of physical meaning.1) 

If irreversible phenomena have occurred in the gas, the return 
to the original state can only be made at the expense of compensating 
transformations elsewhere. It is not in the gas itself but in the 
external systems that a permanent change has occurred which may 
affect the value of their entropy. 

Subject to this assumption, we may proceed in two ways, 
according as we start from the first or second definition above. 

(1) Starting with the first definition, we may define the entropy 
of a thermically heterogeneous system (i. e. system at non-uniform 
temperature) as the sum of the entropies of its differential mass 
elements. 

The change of entropy in an irreversible transformation can now 
be defined when it is possible to find a reversible transformation that 
would produce identically the same changes as actually take place in 
the system. The change of entropy in the irreversible transformation 
is then defined as being equal to the change which would take place 
in the corresponding reversible transformation between the same 
initial and final states. 

[This convention must be made if entropy is to be considered 
as a definite physical entity obeying the above fundamental condition.] 

This definition applies to all cases in which the initial and final 
states can be connected by a reversible transformation. If this is not 
possible, there is no a priori reason for asserting that a definite meaning 
can be assigned to entropy changes according to the first definition. 

(2) We may start with the second definition which, we observe, 
always gives a definite meaning to the concept entropy in accordance 
with our assumed fundamental condition, and we may deduce from 
it expressions representing the entropy changes corresponding to 
different irreversible phenomena. 

79. Entropy of a thermically heterogeneous system. If a system 
of bodies consists of different parts m1: m2 . . . at uniform temperatures 

T2 ... the whole entropy of the system is the sum of the entropies 
of the parts of the system2), and hence is given by 

1) We do not deny that it is possible to build np a mathematical theory 
based on a definition according to which the entropy of a body depends on its 
past history, and even, by suitably interpreting this theory, to deduce results in 
accordance with facts. But such a theory would of necessity be an artificial one. 

2) The use of the word awhole” as in whole volume, whole entropy or 
whole energy is convenient to distinguish these from the volume, entropy and 
energy of a unit mass. Compare also § 7, 
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S = + m2s2 + • • • + mn$n 

where m±, m2 are the masses of the parts, st, s2 their entropies per 
unit mass. We see also that the increment of entropy is given by 

clS = d Qi | d I 
Tt ^ T2 "r 

where d Qt is the whole heat received by the part mt at temperature 
T1} whether this heat be received from outside or from other parts 
of the system. The only limitation to this statement is that no 
irreversible changes must occur within the separate portions m1; m2 .. J 

Where the temperature varies from point to point the system must 
be divided into “differential” elements of mass, as explained in § 46, 
these elements being so small that the temperature is uniform over 
a single element, but the element is large compared with the molecular 
structure of the substance. The summations of the last case must 
be replaced by integrals and we shall write the resulting equations 

dS = J*~y dm ' 

where dqrdm is the quantity of heat absorbed by the element dm 
when its temperature is T. In this notation dqr will stand for 
quantity of heat absorbed per unit mass in the neighbourhood of the 
point whose temperature is T, and the sign of integration will refer 
to the various “differential” mass elements of the body. 

• We notice that the second definition of entropy of § 71 is 
applicable without modification in the present case, since a quantity 
dQ± received by the part at temperature T± represents an increase of 

(T \ T 
1 — y~) is available and d Qx T° is non- 

available relatively to tbe refrigerator T0. 

80. Changes of entropy due to conduction or radiation of heat. 
Let a quantity dQi of beat flow by radiation or conduction from a 
hotter part of the system whose temperature is Tx to a colder part 
where the temperature is 1\. Then the entropy of the first part 

dQ. dQ. 
decreases by and that of the second increases by hence the 

total entropy increases by an amount 

This increase is always positive since T1 must be > Ts for the 
flow to take place from Tt to Tr Hence 
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(1) The effect of irreversible heat flow between the parts of a system 
is to increase the entropy of the system. 

(2) There is no difficulty about representing the entropy changes 

due to this cause as a sum of differentials of the form ~~~ ivhere the 

differentials dQ refer to the actual transformation. 
We have here assumed the passage of heat from one part of 

the system to the other to be instantaneous. When a finite time is 
taken by radiation from one body to reach another, account must 
be taken of the heat gained and lost by the intervening ether, and 
this problem is discussed in Chapter X. 

If the system undergoes a complete cycle, we may divide the 
heat dQ received by any element when at temperature T into two 
parts, one dQt due to conduction or radiation from neighbouring 
elements, and the other d Qe being due to bodies outside the considered 
system. 

Hence for the cycle, we have 

the sign of summation Z referring to the different bodies or mass 
elements of the system. 

Now the first integral vanishes, the total entropy being the same 
at the beginning and end of the transformation1), and from what 
has been just shown the second integral is positive; therefore 

This is a particular case of the inequality of Clausius proved in 
§ 72. The entropy of the system is the same at the end as at the 
beginning of the cycle, but the irreversible flow of heat causes an 
increase of entropy inside the system. To compensate for this a 
negative quantity of entropy must be taken from without, and we 
may now enunciate Clausius, inequality as follows: 

In any non’reversible cycle, the quantity of entropy gained by the 
system from without must be negative. 

We may obtain a further modification of the last inequality, in 
which the temperature of the system itself is replaced by the tempera¬ 
ture of the external body or medium from which the system is heated. 

1) Although irreversible changes take place between the elements or parts 
of the system, we are assuming in this paragraph that the processes within any 

element are reversible, so that for every individual element 

for the complete cycle. 
(/) dQ vanishes 

T 
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If the quantity of heat dQ is taken from a body at temperature 

Tn and given to a part of the working substance at temperature Th 
the entropy of the latter is by definition increased by 

dQ_ 
T. 

dQ 
but that of the source of heat is decreased by -rf • 

. If heat is absorbed from.the source so that d Q is positive Te > 

and hence 
dQ dQ ^ Q 
X. T ^ 

while if heat is given out the same result still holds because Te <7 T-, 
and dQ is negative. The total entropy consisting of the sum of the 

entropies of the working substance and the surrounding media is 

therefore increased. Moreover 

d Q 
~y: 

and therefore a fortiori from (1) 

A particular illustration of the difference of the two forms of 

inequality is afforded by a system performing what is called a 

conditionally irreversible cycle. By this we mean "a cycle which 

under existing external conditions is irreversible but which may be 

made reversible by the substitution of other external conditions”. 

As an example we may take a simple system performing the series 

of operations of Carnot’s cycle, but suppose that when it receives 

heat from the source it is at a slightly lower temperature than the 

source, and that when it gives heat to the refrigerator it is at a 

slightly higher temperature than the refrigerator — a condition of 

things which always exists in actual cycles. In this case the cycle 

would be made reversible by an suitable alteration in the temperatures 

of the source and refrigerator. For such cycles we have 

81. Irreversible conversion of Work into Heat. There are a 

large number of cases in which irreversible changes take place, often 

within the ultimate elements of the system, in such a way that it 

is very difficult to analyse the exact process of events during the 

change. We may take the following as illustrations of one such 
class of phenomena. 
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/ (1) Friction between two rough bodies. 

(2) Impact of two imperfectly elastic bodies. 

^(3) Gas rushing into vacuum. 

(4) Stretched wire which is suddenly cut. 

(5) Retardation of fluid motions due to viscosity. 

(6) Flow of electricity in imperfectly conducting bodies. 

All these phenomena may take place in the interior of a closed 

vessel, impervious to heat, and then no entropy or energy (available 

or otherwise) is imported into the systems from without. In the 

present cases the visible effects produced include an apparent absorption 

of mechanical work in the interior of the system. By the principle 

of conservation of energy, this lost work must reappear in the system 

in the form of some other kind of energy. We may define this 

energy as heat generated internally in the system, the quantity of heat 
so generated being measured by the quantity of work lost.1) We 

shall speak of the phenomenon as an irreversible conversion of^work 
into heat in the interior of the system. Experience shows that a rise 

of temperature or some other equivalent effect invariably accompanies 

the transformation and is exactly the same in amount as if the heat 

said to be generated in the system had been supplied from without. 

What we can safely assert is that the ultimate effect of the 

irreversible changes on the system is the same as could be produced 

by reversible means if energy in the form of work was taken from 

the system, and energy in the form of heat imparted to the system. 

To make things clearer, we consider the separate cases. 

(1) Friction between imperfectly rough bodies. If we were to 

replace the rough surfaces by smooth ones, or introduce balls or other 

anti-friction bearings, it would be necessary in order to make the 

other effects the same, to apply equal and opposite external resistances 

to the sliding parts, equal to the forces of friction which previously 

existed. To make up for the energy thus taken from the system, 

and to reproduce the temperature changes actually observable in the 

bodies, heat energy would have to be supplied to the opposing 

surfaces. If dH is a quantity of work lost by friction, then in the 

reversible alternative system, the work dJB is taken from the system, 

and heat dH is given to it. If T is the temperature of the point 

at which this “generated heat” is applied to the system, the gain of 

entropy in the reversible process is -y-, and hence by definition the 

same is true in the irreversible, pro cess. It therefore follows that in 

defining entropy by the first method “quantities of heat generated 

1) We are here using the term “quantity of heat” generated internally to 
denote something different from the “quantity of heat” received by one body 
from another, as defined in § 58. 
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in the body” must be taken into account, a procedure open to some 

objection. 
But the removal of dH units of work reduces the available 

energy of the system by dH? and the substitution of dH units of 

heat at temperature T, increases its available energy by dH.(l — 

relative to a refrigerator T0 • It follows that the gain of unavailable 

energy in the system is dH—^r and is equal to T0 times the corre¬ 

sponding gain of entropy. Therefore the second definition of entropy 
becomes applicable in this case. 

(2) Impact of imperfectly elastic bodies. Here no energy passes 

to or from the bodies from without, and their total energy is 

therefore constant. The changes in the translational and rotational 

energy produced by impact could be effected by external forces, but 

the bodies would then do external work. Hence to reproduce the 

same results including the observed changes of temperature, by 

reversible means energy equal to this external work must be supplied 

from without in the form of heat. The change of entropy in the 

reversible transformation will be the resulting value of [J*) 

dependent on this supplied heat, and this by definition will re¬ 

present the change of entropy in the actual transformation. As 

before it is easy to see that Tc represents the non-available 

energy gained by the system relative to a refrigerator T(>, so that 

Definition II is still valid. 

(3) Gas rushing into a vacuum. The gas appears to do work 

in expanding, but no work is done on the containing vessel, so that 

the energy all remains in the gas. If the gas expanded against a 

piston external work would he done, and heat would have to be 

supplied to maintain its energy constant. Otherwise it would be 

found that the temperature of the gas was lower than when it expanded, 

freely. This heat would increase the entropy but Definition II would 

still hold. 

(4) For a stretched wire that is suddenly cut the arguments are 

precisely similar to the last case. 

(5) Fluid motion brought to rest by viscosity. Instead of repro¬ 

ducing the same change by artificial means, it is here easier to 

bring back the system to its original state by imparting kinetic 

energy to the fluid and withdrawing heat energy from it. The 

entropy taken from the fluid in the latter change must be equal to 

that which it gains in the former. 

(6) Flow of electricity along a wire. If the electricity were 

transported by convection from the higher to the lower potential, 
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outside work would be done, and a corresponding quantity of beat 
would have to be supplied to the wire, reproducing the observed 
temperature change's caused by the current, and producing an increase 
of entropy. Both in this and the last case, Definition II still holds. 

In the class of systems here considered, if we suppose for greater 
generality that work is being irreversibly converted into heat in the 
interior, and at the same time heat is being received from without, 
and is also passing between the parts of the system, the change of 
entropy takes the form 

(76) 

B B 

A 

B 

where dQe is the heat received from without the system at the part 
whose temperature is Ti} clQL is the heat received from other parts 
of the system, and dH the heat internally generated in the part itself. 

Thus the change of entropy can only he expressed as a sum of 

differentials of the form hy assigning a second meaning to the term 

u quantity of heat”. 
In equation (76) we notice that dH is from the nature of the 

case essentially positive, since heat cannot be converted into work 
without some compensating transformation. Also the second term 

is positive as in the last article. Hence it follows that 

(77) 

B 

and for a closed cycle we have 

,(’8) <0. 

If we replace Ti by Te the external temperature at the point 
from which the heat dQe was obtained we have, a fortiori 

B 

(79) 2 <SB-SA 
A 6 

(80) 

Inequalities (77—80) all constitute, forms or modifications of 
Clausius’ Inequalities as applied to closed and unclosed transformations. 
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82. Cases where the previous method fails. The following irre- 

versible phenomena may here he cited as examples: 

(7) Diffusion of gases. 

(8) Combustion and other chemical changes. 

(7) Diffusion of gases will be treated more fully in chapter XII. 

If the diffusion takes place at constant pressure, volume, and tempe¬ 

rature, and without gain or loss of heat, no expression of the form 

can be associated with the change, and the First Definition of entropy 

is calculated to give the incorrect impression that the entropy is 

necessarily unaltered by diffusion. The Second Definition is free from 

this objection and rightly suggests that the matter can only be 

decided by studying the conditions under which the mixed gases can be 

separated or work obtained by mixing the gases in some different way. 

(8) Combustion and other chemical changes. Here we may have 

to deal with cases in which heat is suddenly generated, producing a 

discontinuous change of temperature. It is evident that differentials 

of the form ~ can only be integrated when the temperature varies 

continuously. If however the energy, available and unavailable, is at 

any instant definite, the entropy of the system will be definite according 

to Definition II, even when Definition I fails. 

Thus in the last two cases, the change of entropy cannot be expressed 

as a sum of differentials of the form 

We thus conclude that ichile the second definition of entropy is 
applicable to irreversible as well as reversible changes, the first definition 
cannot be extended to irreversible changes except in a limited number 
of cases. 

[This of course does not refer to definitions of entropy based on 

the substitution of a reversible change for an irreversible one and the 

wording of the First Definition adopted in § 70 seems free from 

objection.] 

83. Dependence of non-available energy on temperature of 
auxiliary medium. In connection with Definition II, we have seen 

that the non-available energy gained by a system relative to an auxiliary 

medium of temperature T0 is proportional to T0. It is important to 

observe that this property does not imply any physical peculiarity of 
th esystem itself which changes when a different medium is substituted 

as refrigerator. 

When we speak of a system as containing a quantity Q0 of 

energy non-available relative to a refrigerator T0, we imply that when 

as much energy as possible has been converted into work by Carnots’ 

cycles working with this refrigerator the quantity Q0 will be absorbed 
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by tbe refrigerator. If however another refrigerator Tl0 be substituted 
the quantity Qu must be further transformed by a Carnots’ cycle 
from T0 to Tw: and the quantity of non-available energy Ql0 now 
absorbed will be given by n n 

Vw __ Vo_ 

T T 
W 0 

and will be to the former quantity as Ti0 is to T0 without any difference 
occurring in the system itself. 

84. Clausius9 Statements. According to Clausius the First and 
Second Laws are summed up in the following statements. 

I. The Energy of the Universe is Constant. 
II. The Entropy of the Universe tends to a maximum. 
According to Definition II, the latter statement immediately 

follows from the fact that the available energy tends to decrease, and 
therefore the non-available energy necessarily tends to increase. 

Further, Clausius’ Inequalities for non-cyclic transformations 
follow at once from this definition. For the increase of non-available 
energy in the system in a transformation from A to B is by the 
Second Definition of Entropy equal to T0(8S — SA). The quantity of 
non-available energy imported from without amounts respectively to 

T0 / dQl 
X 

and dA 
T. 

according as this energy is measured when it leaves the external 
systems or when it reaches the system itself. Now the changes 
occurring within the system tend to decrease the available energy 
without altering the total energy, and therefore they must increase 
the non-available energy. Hence 

whence 

T,(SB - SA)> T0 f‘^> T„ j 

and moreover, the loss of available energy due to changes occurring 
in the interior of the system itself is measured by 

r~ % —i 

To SB-SA 
f 

dQe 

while the loss of available energy in transit to and from the system 
is measured by „ 

J r— B B 

r*Q. dQ, 
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85. Examples of Entropy. Heat Conduction. We may apply 
Fourier’s method of analysis to determine the rate at which entropy 
is being generated in a solid through which heat is passing. 

Taking k to he the thermal conductivity, y the specific heat 
and q the density, consider a portion of the solid hounded by a 
surface Sr the direction cosines of the outward drawn normal at any 
point of which are l, m, n. 

The rate at which entropy is increasing in the portion is 

///*-£ wdxdvde- 
The rate at which entropy is flowing in from outside 

-//l(!S + “ i + ”S)" 

SffU(W+ (I)’+ 
The difference of these two expressions gives the rate at which 

entropy is being generated in the solid. By the equations of 
conduction this reduces to the last term, namely 

an expression which is essentially positive. 
This expression can also he written 

fffFTs{i)dxdycl* 

where F is the resultant flux of heat, ds an element of length in the 
direction of this flux at the point (x, y} 0). The interpretation of the 
last expression is obvious. 

Numerical examples. The quantity of entropy absorbed by 
1 gram of water when its temperature is increased from 0°C to 1°C 
is found by dividing the work measure of the heat 4*18 x 107 ergs 
by the mean absolute temperature 273*5° C and is therefore 
1*529 x 105 units. 

If a mass of 1 kilogram moving with a velocity of 1 metre per 
second is brought to rest by friction at a temperature of 15° C or 
288° absolute, the work energy rendered unavailable is \ 103 *1002 
or *5 x 106 ergs and the gain of entropy 1*736 x 104 units. 
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86. The Laws of Conservation, Localisation and Transmission of 
Entropy. We may now enunciate the following principles: 

(1) The entropy of an isolated system of bodies can be divided 
into a sum of terms representing respectively the portions of entropy 
located in the several bodies and in the medium. 

(2) The entropy of a body is always the same whenever the 
body is in the same physical state. It may have undergone any 
number of reversible or irreversible changes but if it is brought 
back to its former condition it will contain the same quantity of 
entropy as before. 

(3) The expression for the entropy, like that for the energy 
involves an unknown integration constant. It is possible that the 
entropy of a body at absolute zero may be — oo. The constant 
introduces no difficulties as we are only concerned with changes of 
entropy. 

(4) Entropy can be generated but never destroyed. 

(5) Entropy is always generated when irreversible processes take 
place, and the quantity of entropy so generated affords a measure of 
the irreversibility. 

(6) From (2) and (5) we see that although phenomena may 
repeat themselves in certain limited parts of the Universe, irreversible 
changes will leave an indelible imprint on the progress of events 
somewhere or other, and the increase of entropy will represent a 
real change in the physical condition of the Universe as a whole. 

(J) When irreversible changes take place in the interior of a 
system, the gain of entropy is greater than the quantity of entropy 
imported into the system from without, the difference representing 
the quantity of entropy generated by the irreversible changes. If 
the system undergoes an irreversible cycle a positive quantity of 
entropy will have to b^ exported from the body equal to the quantity 
generated internally. 

(8) When heat flows from a hot to a cold body entropy is 
generated. If the flow take place by radiation, this entropy may be 
said (provisionally) to be generated in the intervening medium or at 
the surfaces of the two bodies. At the same time, it must be 
remembered that we have not yet discussed the thermodynamics of 
the ether, which will be dealt with in Chapter X. 

(9) The reversible phenomena of thermo-electricity show that the 
localisation of entropy may be altered by electric currents, leading to 
the inference that the entropy of a system depends on its electric 
state. For a detailed discussion of these phenomena, and a comparison 
of the two definitions of entropy as applied to them, the reader is 
referred to Chapter XYI. 
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87- Temperature-entropy diagrams. In the practical applications 
licrmodynamics to steam-engines and other heat-motors much 
s made of the temperature-entropy diagram, i. e. the diagram of 
ilic or other process formed by taking as coordinates temperature 
entropy. As & and 93 instead of T and S are the usual symbols 
emperature and entropy in English books, such a diagram is 
rn in England as a “thetaphi diagram”. 
rJhe following are some of the most important properties of 

a diagram when the working substance is a simple system: 
(1) For a Carnot’s Cycle the diagram is a rectangle bounded by 
lines T = constant and two lines S = constant. 
(2) For a reversible cycle, integrating the equation 

lotain 
dV = TdS -pdV, 

(f)TdS-(f)»dV 
.<> areas of the (T, S)} and (p, V) diagrams are equal. 

(3>) For a working substance performing an intrinsically irreversible 
? the temperature entropy diagram is a closed curve. If the 
be replaced by a rever- 
one having the same 

erature - entropy dia- 
the amount of work 

xied will be greater than 
•e. It readily follows 
;lie area of the (jo, V) dia- 

is less than that of 
jf„) S) diagram, and that 
atio of these areas gives 
ratio of the efficiency 
le cycle to that of a 
ctly reversible one, i. e. 
3fficiency of the cycle 
g that of a perfectly 
sible cycle as unity. 
3t) If however we seek 
^present in a diagram 

O S 
rig. 10. 

temperature - entropy 
2jes occurring in the source and refrigerator, we do not 
sarily obtain a closed curve. In this case if T1 and T% are the 
©xatures of the source and refrigerator, 8 the entropy taken from 
:jurce in one cycle, the work which would be obtainable from 
ame quantity of heat in a perfectly reversible cycle is represented 
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by a rectangular area of height S and base and the ratio of 
the indicator or (p, V) diagram to this diagram is the proper measure 
of the efficiency ratio. The reason for this choice is that in practice 
we want to economise the heat taken from the source as far as 
possible, and we do not mind so much what happens at the 
refrigerator provided we get the greatest possible amount of work 

out of this heat. 
The complete study of these diagrams belongs to treatises on 

technical thermodynamics. 

CHAPTER YIII. 

EXPRESSIONS FOR THE AVAILABLE ENERGY UNDER 

PARTICULAR CONDITIONS. — CONDITIONS OF STABILITY. 

88. The energy test of stability. The discussions of the preceding 
chapters lead to the general conclusions expressed by the formula 

(81) dU=dQ-dW 

and for reversible transformations at temperature T 

(82) dS = 

■whence also 

(83) dU=TdS-dW 

where d U and dS are the perfect differentials of two functions whose 
values are determined by the state of the system, these two functions 
being called energy and entropy of the system. 

We now proceed to discuss the conditions of equilibrium and 
stability of certain systems subject to given external conditions, assuming 
the First Definition of Entropy. We provisionally exclude chemical 
and other 'changes for which the First Definition fails, and in parti¬ 
cular we exclude radiation phenomena except in cases where the 
energy capacity of the ether is negligible (§ 66). 

From the energy test of stability in Rational Mechanics, combined 
with the principle of degradation of energy, it follows that a thermo¬ 
dynamic system subject to given conditions will be in stable equilibrium 
if its available energy is a minimum for all small variations consistent 
with the given conditions. 

If x} y} 0, ... be any variables specifying the state of the system 
subject to given conditions, and A = f(x> y, #) represents the available 
energy, the usual theory of maxima and minima requires that if 
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f(x + h, y + h, 0 + 1.. — y, s) be a function capable of expansion 
in powers of h, Jc, l then (a) the terms of the first degree ^jnust 
vanish, and (b) those of the second must be essentially positive. 
Also we infer by analogy with the corresponding problem in Rational 
Mechanics that the first condition (a) is required for equilibrium, 
and condition (b) for stability; in other words we shall in general 
assume that 

For equilibrium, the variation of the available energy must vanish 
to the first order. 

For stability the variation of the available energy must be positive 
to the second order. 

The first of these conditions may be stated in the following 
form: In the neighbourhood of any equilibrium state any small change 
may be regarded as perfectly reversible to the first order of small 
quantities. 

This property is of fundamental importance as it shows that 
problems of thermodynamic equilibrium can in general be correctly 
solved by means of the methods of reversible thermodynamics alone. 
Most applications of thermodynamics depend on this fact. 

89. Exceptional Cases. In applying the energy test of equilibrium 
and stability exceptional cases may occur, of which the following 
simple illustrations from elementary mechanics sufficiently indicate the 
nature. These exceptions 
must be borne in mind in 
any general treatment: 

(a) State of Stable Equi¬ 
librium not unique. A heavy 
particle may be in stable 
equilibrium on the curve 
of Pig. 11 either at A, B) 
or Cy although its potential 
energy is greater at JB than 
at A, and greater at A 
than at C. Thus the con¬ 
dition of stability does not 
require the energy to have 
the least possible value 
but only to be less than 
in neighbouring positions. u* 

(b) The variation of energy does not vanish to the first order. 
When a weight rests with its base AB on a table a small angular 
displacement about A or B will produce a change' of the same order 
in the potential energy. We might speak of the system as having 

BbYAK, Thermodynamics. n 
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unilateral freedom, the constraint due to the table allowing the base 
to be raised but not lowered. For a system to rest in such a state 
it is necessary for the energy variation to be positive for any possible 
displacement consistent with the constraint, but when a displacement 
in the opposite - sense is excluded, this energy variation is not 
necessarily a quantity of the second order. 

Fig. 12. 

(c) Equilibrium maintained by friction. A body placed on a plane 
inclined at an angle less than the angle of friction will remain at 
rest, although if friction were removed it would slide down. 

Thermodynamical analogues of these cases exist in chemical 
phenomena; according to Duhem case (c) has its analogue in certain 
phenomena called “false equilibria”. 

With these prefatory statements, we shall now show how the 
principle of degradation of available energy can be used to obtain 
the conditions of equilibrium and stability of a thermodynamical 
system in certain particular cases. To do this it is only necessary to 
construct expressions for the available energy of the system subject 
to the given external conditions. 

Some of the results obtained — as for instance that for equilibrium 
the temperature and pressure of a system (under no forces except 
pressure) must be the same throughout — are so obvious that it is 
of course superfluous to prove them by this means, but the investigation 
is necessary in order to deal with the question of stability, and to 
extend the conditions of thermodynamic equilibrium to more general 
systems. 

90. System at rest surrounded by an indefinite medium of uniform 
temperature T0 and pressure jp0. We do not suppose the system to 
have attained its equilibrium state, so that its pressure and temperature 
are not necessarily the same as those of the medium. Suppose for 
the sake of simplicity that the system consists of r simple systems 
characterised by the suffixes 1, 2, ... r and that the state of the r th 
part is fully specified by the variables pn Vr, Tr, Sr, Un representing 
pressure, whole volume, temperature, whole entropy and energy, of 
which only two are independent. 
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Then if a quantity dQr of heat be withdrawn from the rth part, it 

follows from above that a quantity of at least d Qr x will have 
-t- r 

to be given to the medium, and hence that the maximum amount 
of mechanical work derivable from dQr is 

*«■•( '-%)■ 
Moreover, when the volume expands by an amount d Vr against 

the external pressure, the amount of work done is (pr — P<y)dVr. 
Hence the total differential of the available energy of the system is 
measured by 

dA = ^dQr(l - 

For equilibrium dA must vanish, giving the conditions Tr = T07 
pr = hence the available energy can only be a minimum when 
the temperature is everywhere T0 and pressure p0, as is otherwise 
obvious. 

We may take the available energy in this state to be zero since 
no work can be obtained from the system by the transformations, 
subject to the conditions under consideration. This does not mean 
that the system cannot undergo other transformations such as 
chemical changes, or that further energy cannot be rendered available 
by a change of external conditions, but merely that our estimate 
refers to the amount of energy which is available for conversion into 
work when such extraneous changes are excluded. 

Moreover dQr*= — TrdSr [dQr represents heat withdrawn whence 
the minus sign). Hence the integral representing the available energy 
of the whole system becomes 

A = -^f(Tr- T0) *8, + 2f (Pr - To) d Vr. 

But by the equations of reversible thermodynamics 

aur=* TrdSr -PrdVr. 

Hence the total available energy is 

A-~2f(dUr- T0asr + pjvr) 

taken from the initial state to the state (jT0, p0) 

= 2^ - ^Sr+P0rr)-^{TPr ~ T0S\+pQ T'%) 

where Ur°, Sr°, Vr° refer to the rth body in the final state (T0, pQ). 
This expression gives on summation 

(84) A-(U-U0) — T0(8 — 80) + Po(V— F0). 
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It follows from this expression that if | 

(85) U- T0S + p0V> U0 - T,80 + p0V0 

the system can pass from the state (U, S, V) to the state (Z70, SQ, 
V0) hut cannot pass in the reverse direction unless available energy 
be supplied from without. This condition is therefore the condition 
that the state (UQ, SQ} F0) should be one of stable equilibrium. 

91. System surrounded by an envelope of invariable volume F0 
kept at constant temperature T0. In this case the differential of the 
available energy is given by 

dA^-^(Tr- T0)dSr + ^PrdVr 

and the condition of constancy of volume, gives 

]£dVr = 0. 

The state of minimum available energy is thus defined by 

0-dA--£(Tr-T0)dSr +^PrdVr 

for all variations consistent with dVr — 0. 

It follows that for this state of equilibrium 

Tr — TQ) px = p2 * • • = pr 

(results which are otherwise obvious). 
And since 

clUr=TrdSr-prdVr, 
we have 

dA = - ]gd Ur + T0 2dSr, 
whence 

(86) A =2(^ - Wr) -^(U'-T.SS) 

. ^V-U0-T0(S-S0) 

leading to the result that for stable equilibrium in the state U0, S0 
we must have for all possible neighbouring states U, S} 

(87) U~T0S> U0-T0S0. 

92. Stability of homogeneous fluids. Although a homogeneous 
fluid has been taken as the type of a simple system; and may be so 
taken as long as it remains homogeneous, it is necessary in order 
that the fluid may be in stable equilibrium that its available energy 
shall be a minimum for all displacements and not merely for dis¬ 
placements in which the fluid remains homogeneous. The same 
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consideration applies to thermodynamic systems of a more general 
character, and shows that in discussing the stability of a system with 
n degrees of mechanical freedom it is necessary to contemplate 
variations other than changes in the values of the n + 1 variables 
which are sufficient to specify the state of the system as long as it 
remains homogeneous. For the present we confine ourselves to a 
detailed discussion of the case of a homogeneous fluid, which will 
sufficiently indicate the general character of the analytical results 
obtained when any case of thermodynamic stability is worked out by the 
methods of the differential calculus as a problem in maxima and minima. 

We have to consider the possibility of displacements in which 
the fluid instead of remaining homogeneous divides itself into two 
or more parts differing in their physical properties, as illustrated, 
for example, by a liquid in contact with its vapour, or a substance 
partly in the solid and partly in the liquid state. If by such a 
change the available energy could be decreased the homogeneous 
state would be unstable, and examples of such unstable states are not 
uncommon in actual experience. 

If we consider an element of the fluid whose mass is a very 
small fraction of the total mass, any change in the state of this 
element will produce a correspondingly very small change in the 
pressure and temperature of the remainder. By dividing the fluid up 
into differential elements of mass (§ 46) the condition of stability of 
each element is seen to be correctly obtainable by making the 
assumption that the fluid surrounding that element is kept at constant 
pressure and temperature. Taking T, p to be this temperature and 
pressure, u, v, s the energy, volume, and entropy of a unit mass of the 
fluid at any point in the equilibrium state, u!, s1 their values at 
any neighbouring state, we must have at every point 

(88) ‘ ur — Ts1 + pv!> u — Ts +pv. 

NTow let the energy u be expressed as a function of the entropy s 
and volume v. Putting s! — s = h, vf — v = h and expanding u in 
powers of h9 Tc by Taylor's Theorem we find to the second order in h} h 

(u! — Tsr + pvr) — (u — Ts + pv) 
d_ 
ds \ + hJc 

dh 
ds dv ■lc2 

dv2' 

For equilibrium the terms of the first order vanish; for stability 
those of the second order are positive. Therefore for equilibrium 

(89) 

and for stability 

(90) ££>0, 

du _ rp du _ 
ds ’ dv & 

d*u 

W* 
S"*^*!* d*u 

Ts* Jv* >0. 
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Equations (89) lead to 

du = Tds — pdv 

in accordance with the Principle of Conservation of Energy and the 
property that a small transformation is reversible to the first order. 

Of the inequalities (90) the first two now give 

The third may be written 

(92) 
dT dp 
ds dv 

dT dp 
dv ds 

<0 

taking s and v as independent variables. Now 

irr dT J , dT , 
dT = -7r«5 + y-av 

ds dv 

dP-17ds + dd%dv- 

It follows as in § 34 that 

dT dp dT dp 
idT\ _ ds dv dv ds 
\ dsjp djp 

dv 

dT dp dT dp 
'dp\ __ ds dv dv ds 

ds 

and therefore (91), (92) are equivalent to the four statements 

These signify that 
The addition of heat at constant pressure or at constant volume 

rakes the temperature; that is the specific heats at constant volume and 
pressure are positive (§ 11). 

The inwease of pressure at constant temperature or entropy decreases 
the volume, that is the moduli of elasticity at constant temperature or 
entropy are positive (§ 14). 

These conditions are obvious from general considerations. 

93. When the pressures are everywhere in equilibrium the 
expressions for the variation of the available energy in the presence 
of a medium of temperature T0 take the form 

<u.i-|). 

If we have a mass m of a homogeneous substance whose specific 
heat is y} and temperature T1} the available energy obtainable in 
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reducing it to a uniform temperature T0 bv reversible means is 
therefore given by 

s\ 

A= 
T0 

Here y must be taken to be the specific heat at constant pressure 
or constant volume according as the external conditions are those 
of § 90 or § 91. 

This is all the available energy obtainable from the system 
(unless the final state is unstable or the stable state is not 
unique, § 89 (a) or other variations may take place). We may say 
that the available energy in the final state is zero. If subject to the 
assumed conditions a medium of temperature different to T0 were 
procured, the conditions would be altered and further energy would 
be rendered available. 

If the body is colder than the surrounding medium {T1 < T0) 
the expression for the available energy obtainable in bringing it to 
temperature T0 may be thrown into the form 

To 

A — J'my _ i\(lT 

and since T0> T throughout the integration A is again positive. Thus 
available energy is obtainable from a cold body such as a glacier; 
conversely to cool a body below the temperature of the surrounding 
air, as in the manufacture of artificial ice, available energy must be 
supplied from without, by means of a steam engine or otherwise. 

94. System enclosed in a rigid envelope impervious to heat. — 
Gibbs’ First Condition of Stability. The work done by the expansions 
of the different parts of the system is equal to 

2i>rdV„ 

subject to the condition ^)dVr= 0. 

To estimate the available energy which can be converted into 
work by expansion and transference of heat between different parts 
of the system, assume an auxiliary body at temperature T0, and in 
the first place suppose heat is transferred between the various bodies 
of the system and the auxiliary body by means of Carnot’s cycles. 

If dQr is the quantity of heat, dSr the quantity of entropy 

taken from the rth body then a quantity of heat d Qr x is given 
-L r 

to the auxiliary body and the amount of work done is 
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dQr( 1-t) 
and V rl 

(93) dA — d Qr (l - +^pdVr. 

If the total quantity of heat received in any time-interval by 
the auxiliary body is made equal to zero, the auxiliary body may 
be removed, and if the volume be kept constant the conditions will 
be those of a system completely closed from outside influence. Equating 
to zero the heat received by the auxiliary body we have 

whence 

also 

(94) 

0=^dQr^^To^dSr= T,dS 

S = constant 

dA = dQr-\- '^)pdVr. 

For equilibrium dA = 0 subject to 

(95) 2t = 0 md 

This requires the obvious conditions 

Tx = T2= ••• = Tr and px = p2 = • • • = pr 

and the maximum work obtainable under these conditions is 

A — J* (d Qr +• pr d Vr). 

Since dQr here represents heat taken from the rth body instead 
of heat given to that body, dQr is equal and of opposite sign to the 
ordinary dQ of thermodynamics, and therefore dQr + prdVr= — dUn 
and the expression for the available energy becomes 

(96) A--^jfaUr--JdU~‘U-U0 (say) 

the integration being made along an isentropic path from the given 
state to the state in which the energy U0 is a minimum subject to 
the condition of constant entropy. 

The condition for stable equilibrium requires that the available 
energy shall be a minimum, and therefore that the total energy U 
shall be a minimum for variations which keep the entropy S constant. 
This is one of the two alternative conditions of stability of an isolated 
system given by Gibbs in the following statement: — 

For the equilibrium of any isolated system it is necessary and 
sufficient that 
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(1) for all variations of the system which do not alter its energy, 
the variation of its entropy shall be either zero or negative 

(2) for all variations of the system which do not alter its entropy 
the variation of its energy shall be either zero or positive. 

In other words 
(97) (SS)(r£0 or (SU)s^O. 

95. Gibbs’ Second Condition of Stability. Let any system be 
isolated from all external influences for any given interval of time. 
If the parts of the system are not in equilibrium amongst themselves, 
irreversible changes will occur in the internal state of the system, 
and the principle of degradation of energy states that these changes 
will be of such a character as to decrease and never to increase the 
available energy which the system would have when subjected to 
given external conditions. 

Now we have obtained for the available energy of a system of 
constant volume in the presence of an indefinitely extended medium 
at temperature T0 the form 

A-XU-T0S)-(U0-TtS0) ' 

according to whether the pressure of the medium or the volume of 
the system is kept constant. 

For changes which take place in the interior of the system alone, 
the total energy U remains constant. The only quantity which can 
vary is the entropy S, and we see that the changes of entropy and 
available energy are connected by the relation 

dA = — T0dS. 

Since A tends to decrease S tends to increase, and hence in the 
position of stable equilibrium in which A is a minimum for constant 
U, S is a maximum as stated by Gibbs. 

The expression T0(S0 — S) subject to U = U0 represents the 
amount of work which may be made available subject to the conditions 
that no energy either in the form of heat or of work is to leave the 
system as a whole. 

In the previous article it was assumed that no heat was gained 
or lost by the auxiliary body. The present expression, on the other 
hand, assumes that no heat is gained or lost by the system. The 
energy which is made available in the form of work is really taken 
from the auxiliary body by transformations compensating the trans¬ 
formations of heat from the hotter to the colder parts of the system. 

It will thus be seen that the available energy of an isolated 
system, though it appears at first sight to be simpler, is really more 
difficult to evaluate than that of a system in the presence of a 
thermically homogeneous medium. Under either hypothesis it is 
doubtful how far the system can be correctly described as isolated, 
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for, strictly speaking, this term implies that it can exert no outside 
influences whatever. At the same time irreversible changes may 
occur in the interior of the system; what we do know is that if 
communication be established with the outside in any given way, 
the energy thus rendered available will be greater before than after 

the changes. 
Again, the energy which is available in a system which is more 

or less isolated is necessarily not greater than its available energy in 
the presence of a medium T0. For we may always in the latter 
case assume the system to undergo the same transformation as if 
the medium were absent, and if the final temperature which it 
reaches under that condition is different from 10 there will still be 
available energy between the system and the medium. 

96. Lord Kelvin’s Expressions. The expressions of § 94 for the 
available energy of an isolated system have been thrown into a 
simpler form by Lord Kelvin in the particular case in which the 
pressures are in equilibrium amongst themselves (so that the work of 
expansion is zero), and the heat capacities of the various portions 
remain constant throughout the range of temperatures concerned. 
Taking the equations (94), (95) which now become 

0: and dA ■ 

and supposing Tr to be the total capacity for heat of the rth body 
and 1 the final temperature, we obtain 

•-2/^ 
or since rr is constant 

NIL log Tr 
log T--" A ■2r,r,. 

FrdT 

T^rr. 
In the case of two bodies of equal thermal capacity 

A = r2 = \ 
where F is the thermal capacity of the whole. Lord Kelvin finds 

T = y{Tx Tt), A = £ (i/T, - 

In the general case an equally simple result can be obtained by 
dividing the system into a number of parts or elements whose 
capacities for heat are equal. If n is the number of parts and F 
the total capacity for heat of the system, wTe write 

in the above equations and obtain 
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(T1} T„... r,)"- geom T, 

A = r—* - rr = r(arm T - geom T) 

where arm T and geom T denote the arithmetic and geometric 
means of the initial temperatures. 

The precise meaning of this result is as follows: 
When the system is brought to a common temperature by 

reversible processes, that final temperature is the geometric mean of 
the initial temperatures. If it is allowed to come to a common 
temperature by heat conduction between the several parts thereby 
losing all its available energy, that common temperature will be the 
arithmetic mean of those of the parts. The available energy is equal 
to the quantity of heat required to raise the temperature of the 
system from the final value it would obtain by reversible processes 
to the value it would obtain by irreversible conduction. 

CHAPTER IX. 

THERMODYNAMIC POTENTIALS. 

97. Thermodynamic Potentials of a Simple System. In this 
chapter we shall consider the statics of an ideal thermodynamic system, 
and shall show that the properties of such a system when in equilibrium 
are completely determined by a single function of the independent 
variables required to define the state of the system. We start with 
equation (83) of the preceding chapter, 

dV= ias-dw, 
and we observe that this relation holds (a) for reversible trans¬ 
formations in which the system remains thermically homogeneous, 
and (b) in general for small displacements from a state of equilibrium, 
the uniformity of temperature being a necessary condition of equi¬ 
librium (§§ 88, 94). 

Taking now a homogeneous fluid as the type of a simple system, 
we write dW — pdV, and therefore dU= IdS — pdV whence 

It follows that if the volume V and entropy S are chosen as 
the two independent variables specifying the state of the system and 
if U= v where is a known function of S and the 
temperature and pressure are given by the two partial differential 
coefficients of this function (the second with its sign changed). 
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For this choice of independent variables the energy, therefore, 

plays the part of a potential function and may he regarded as the 

thermodynamic potential of the system^ 
We can compare these results with the analogous relations in 

statics- S and V will represent the generalised position coordinates 

of a system, — T and p with the corresponding force-coordinates. 

Or again in the kinetic analogue S and V will represent generalised 

velocities, T and —p the corresponding momenta or impulse- 

coordinates. 
In practice it is usually more convenient to take the temperature 

instead of the entropy as an independent variable, and sometimes the 

pressure instead of the volume, and in such cases we use a “modified 

function” in place of the function V. 
Let V and T be the independent variables and put 

(99) 

then 

leading to 

(100) 

y TV 

d%. rr 

TV 

U-ST 

dU - TdS-SdT 

-SdT-pdV 

d%TV 
S> = -P- Vf ~~ dr 

Again taking p and T as independent variables put 

(101) %rr-u-sr + pr 
then 

leading to 

(102) 

d— SdT fi- Vdp 

TP 

dT — s, dp 
+ v. 

Finally if 8 and p are independent variables and if 

(103) + 

we get d^sp== TdS + Vdp, 

rir\A\ _ r = V (104) T> dp T* 

The four functions gW, %tv, %tp, are thermodynamic 

potentials of the system for the corresponding pairs of independent 

variables. As however the second and third are the most commonly 

used, they will be denoted for shortness by gr and g/>, and called 

the thermodynamical potentials for given volume %n&. pressure respectively, 

the other variable being taken to be the temperature unless the 

entropy is actually specified. 
When instead of the whole body we wish to refer to a unit 

mass of the working substance we use small letters to denote the 

volume, energy and entropy, and these are got by dividing the 
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corresponding quantities for the whole body by the mass. We shall 
denote the corresponding thermodynamic potentials per unit mass by 

f„ or u, or f„, or \p and g, or 

As the small suffixes are sufficient to distinguish the potentials 
of unit mass from the potentials of the whole body, it is immaterial 
whether a capital g or small f is used. 

The fundamental property common to each of the thermodynamic 
potentials viz: that all the coefficients which determine the physical and 
mechanical properties of a body are known ivhen a certain function of 
the independent variables ivhich define the state of the body is known, 
was enunciated by F. Massien in 1869—1876, who gave the name 
characteristic function to such functions. 

98. Systems with any number of degrees of Freedom. Let us 
now consider a thermically homogeneous system with n degrees of 
mechanical freedom. The state of such a system is completely 
specified by its n generalised coordinates, xi? x2, xs, . . . xn and either 
its absolute temperature T or its entropy S. If Xly X>, ... Xn are 
the generalised, force components corresponding to x19 x2, . . . xn the 
external work done in any displacement is 

d W = Xtdx, + Xodx2 + • . ■ + XndXn. 

From (83) 

(105) dU~ TdS - X^Xi-Xsdx*-Xndxn 

giving for independent variables 8, xl} . . . if 3^= £/, 

_rp 83.S'* _ _ -y 

WS~ > ~d"x~ 

Taking in like manner 

gr, = U-T8, 
$« = U-TS + ^Xx, 

we have for the corresponding choices of variables 

--S, 1W * 0xr 

<>%TX 
oT ~ = -s, 

d%TX 
dXr == + ecr, 

dS ~ 
= + r, Wxx 

dXr = + Xr. 

We may also construct other modified forms of thermodynamic 
potential for cases in which it is convenient to take some of the 
independent variables to be coordinates and some to be force 
components. 
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99. Number of Arbitrary Constants in the Potentials. The energy 
and entropy of a system each involve an unknown arbitrary constant 
dependent on the fact that we are only able to take cognisance of 
changes of their values and that we cannot form a definite conception 
of a state of zero energy or entropy. 

Consequently the thermodynamic potentials in which the tem¬ 
perature is an independent variable contain two arbitrary constants 
entering in the form a + 1)T. 

If we agree to choose an arbitrary zero of energy and entropy, 
i. e. to make the entropy and energy zero in a state which is capable 
of experimental .realisation, the constants disappear. 

Whether a state at absolute zero of temperature can be taken 
as that of zero entropy depends on whether the heat capacity tends 
to a finite limit or to zero as the temperature approaches zero. If 
the former the entropy at absolute zero will be minus infinity. 

100. Connection with available energy; Helmholtz’s 44Free 
Energy”. If we compare the expressions for and with the 
expressions of §§ 90,91 we see that by a proper choice, of the arbitrary 
constants mentioned above becomes the available energy of the 
system in the presence of a medium of the same temperature as itself) 
and %P becomes its available energy in the presence of a medium of 
the same temperature and pressure as itself The difference is that in 
§§ 90, 91 we do not necessarily suppose the temperature and pressure 
of the system to be the same as those of the medium, so that our 
expressions there obtained are of a more general character. When 
the system has come into a state of equilibrium with the surrounding 
medium its available energy will be equal to or as the case 
may be1), or will differ from these functions by the arbitrary 
constants a + 1) T. 

In the case of a compound system, a method of proof identical 
with those of §§ 90, 91 shows that the available energy relative to a 
medium T0 is of the form 

U~U0-T0(S~S0) 
or 

_ U-U0- 10(S- S0) +2!xo(* - *o) 

1) This statement leads to little difficulty in connection with §§ 90, 91 in 
which we have assumed the zero of available energy to be obtained when the 
temperature (and pressure) of the system are the same as those of the medium. 
The fact is that many writers have deduced the conditions of thermodynamic 
equilibrium from the consideration of isothermal displacements alone, and for 
such displacements the thermodynamic potentials sufficiently determine the 
variations of available energy (or “free energy” in the sense adopted by 
Helmholtz). 
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according as the coordinates or the external forces X0 . . . are 
maintained constant. It is easy to see that a similar connection here 
exists between the functions and and the corresponding 
available energies of the system subject to the limitation that equilibrium 
exists between the system and medium. 

The potential or %Tx is the function used by Helmholtz 
under the name of “free energy'*. This potential is known as the 
inner thermodynamic potential by JDuhem while the other potential 
$/r/> or $rx is called the total thermodynamical potential. 

101. Thermodynamic Surfaces. A function of one or more variables 
is not necessarily expressible in terms of those variables by any 
symbolic formula, however complicated, hence we are not justified 
in assuming a priori that a thermodynamic potential is so expressible 
in terms of the variables which are chosen to define the state of the 
system. In a simple system, where we have only two independent 
variables, and one dependent variable, namely the corresponding 
thermodynamic potential, we may take these as represented by the 
three rectangular coordinates of a point, and the locus of this point 
will be a geometric surface which is called a thermodynamic surface. 

Taking a unit mass of a working substance, the surface obtained 
by taking (r, ,s, u) as coordinates is known as Gibbs* thermodynamic 
model of the substance, and has been constructed for various actual 
substances from experimental considerations. Taking x} y, z as the 
axes of v, s, u respectively, the polar reciprocal with respect to 
?/2 = 2.z keeping x constant gives the corresponding (•?;, T, %0) surface 
and the reciprocal with respect to x* + ?/2 =2,2 gives the (p, 1\ $.p) 

surface as will be shown later. 
The condition of stability of § 92 also receives a simple geometric 

interpretation in connection with the (v, s, n) surface. It represents 
the condition that the surface in the neighbourhood of any point 
shall be below the tangent at that point, i. e. shall be concave up¬ 
wards if the axis of u is drawn upwards. 

102. Thermodynamical potentials of an Elastic Solid. In the 
theory of elasticity, the state of strain of a body at any point is 
determined by six components (sx, sZ} yX) yV} connected with 
the three displacements (|, r\) g) of the point (x, y, &) by six rela¬ 
tions of the forms 

H 
d x 

On the other hand the state of stress is defined by six com¬ 
ponents {pX} 0yy <5Z) xX) xyj xz) so chosen that in any small displacement 
the work done referred to unit volume of the undeformed body at 
the point (x, y, z) is 6xdex + 6ydsv + a:dsz + xxdyx + xydyy + xzdys. 
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To refer this to unit mass instead of to unit volume we have 
to divide by q the density of the body in its original undeformed 
state, and taking u as the energy per unit mass, we have 

du = Tds + i + ^rdy)- 

Here qu is the elastic potential of unit volume at constant 
entropy, giving for adiabatic changes 

the differentiations being made on the supposition that the entropy 
is constant. This condition holds in the case of rapid vibrations in 
which no heat passes between the parts of the body. 

Introducing the thermodynamic potential g*, namely 

%s = u — Ts, 

we have 

leading to 

Q 

d$e = — sdT + ~ (^6ds + 

m.\ (2%.\ 

the condition T = constant during partial differentiation showing that 
is the proper elastic potential to use for slow displacements where 

the temperature remains constant. 
If the stress components are given the potential functions to be 

used are obtained by subtracting from u and the expression 

jXG*£* + 6iiEv + 6*8* + **7* + ryYv + **?*) 

and the corresponding potentials may be denoted by ^Sa and %T(t 

for adiabatic changes sx = 

for isothermal changes sx === 

. We shall have 

1 II 1 

Q dTx 

1 d%Ta 

Q dX 
X 

In the case of simple traction parallel to the axis of x, we have 
6y} <5Z) tx, xyy tz each equal to zero, and the corresponding value of 
xxjax derived from the potential represents the ordinary modulus 
of elasticity (Young’s modulus). It is also to be observed that in 
the ordinary theory of elasticity where small displacements are only 
taken into account, so that the stresses are assumed for the purposes 
of calculation to be linear functions of the strains and conversely, 
the potential functions are quadratic functions of the strains or 
stresses according to the choice of coordinates, and the entropy of 
unit mass must therefore be also a homogeneous quadratic function 
of the same variables, plus a constant. 
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CHAPTER X. 

APPLICATION OP THERMODYNAMICS TO RADIATION. 

103. Black body radiations. The principle of degradation of 
energy is essentially based on our knowledge of phenomena associated 
with matter. The motions of the celestial bodies, and the propagation 
of light waves which reach the Earth from distant stars afford 
evidence that in the ether no such degradation of energy takes place, 
or, if degradation exist, it is immeasurably smaller than what occurs in 
the phenomena of material bodies. 

While radiation may follow a body in a particular direction, the 
radiation emitted by a body is equally distributed in all directions. 
It follows that when the ether is traversed by radiation which is 
unequally distributed as regards direction no state of heat equilibrium 
can exist between the ether and a material body, and the notion of 
temperature at a point which is the same in all directions becomes 
inapplicable to the ether. Even if the heat absorbed and emitted 
by a body are equal in amount, they are different in direction, so 
that this condition, so far from representing an equilibrium state, 
corresponds to a steady irreversible transformation. 

For heat equilibrium to exist between a body and the ether it 
is necessary that the radiation should be equally distributed in all 
directions, and that the intensity of the total radiation falling on the 
body should be equal to that of the radiation emitted by the body. 
If we imagine a body of uniform temperature containing a cavity 
unoccupied by matter this state of equilibrium will soon be attained 
and the intensity of the radiation inside the cavity will be the 
intensity of radiation of a “black body” of equal temperature. In 
this way a black body is capable of experimental realisation, and 
its radiation has been studied by Lummer, Wien, Pringsheim 
and others. 

In many of the previous discussions it has been tacitly assumed 
that when heat passes from a hot to a cold body the transfer takes 
place instantaneously, and this is virtually equivalent to assuming 
that the heat capacity of the ether may be neglected. There is no 
a priori reason for asserting that heat could not be made to pass 
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fr oi a cold to a Lot body, and perpetual availability thus obtained, 

it t were possible to produce a suitable series of changes during the 

sn 11 time-intervals occupied by radiation in travelling from one 

body to the other. If such a possibility existed, it would be difficult 

if not impossible to put in practical working, and would in no way 

vitiate the validity of the principles of thermodynamics as applied 

to a large and important class of phenomena in which they would 

still hold good. 

The only way of dealing with this point is to ask in the 

first instance the question: If the principle of degradation of energy 

still holds good what consequences are logically deducible from it? 

When this question has been answered the next step in the enquiry 

is to ascertain whether these consequences are in agreement with 

experiment. 

104. Existence of radiation pressure. Now the first result arising 

out of this mode of reasoning is the existence of pressure due to 

radiation. 

For let S' be a perfectly reflecting tube, near the ends of which 

are placed perfectly reflecting partitions C, D, the space between 

which is devoid of radiation. Let a colder body B and warmer body 

A be placed in the two ends, and let the partition 1) be opened. 

Then radiation from B will pass 

into the tube until an equili¬ 

brium state is attained. If D 
be closed and j^opened this 

radiation will certainly pass to¬ 

wards the warmer body A, but 

A will send radiation of greater 

intensity into the cavity so that heat will not as yet pass from the 

colder to the warmer body. 

But if the plug B be moved up to the end G} the heat from B 
will be transferred to A. 

If we assume that this case does not afford an exception to the 

principle of degradation of energy, available energy must be supplied 

from without, and the only form which this energy can assume is 

that of work done in moving the plug from D to G. The radiation 

must therefore exert a pressure on the plug. 

Now the existence of such a radiation-pressure is verified by 

experiment as well as by theoretical considerations which are in¬ 

dependent of the laws of thermodynamics, in connection with the 

electromagnetic theory of light. We may regard this result as a 

first step towards proving that it is impossible to restore lost availability 

by means of the ether. 
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105. Boltzmann’s Investigation. We may now following r ie 

methods of Boltzmann construct a Carnot’s cycle for the ether' >r 

aether engine” as follows: 

Let 1C be a perfectly 

reflecting tube containing a per¬ 

fectly reflecting piston C, and 

devoid of matter, A a hotter 

and B a colder radiating body. 

(1) The piston being at 

the end K, let it be placed in 

contact with A? and let the 

piston move outwards slowly, 
the space behind absorbing radiation from A and work being done 

by the radiation pressure. 
(2) Let the body A be removed and the end K closed to further 

radiation. Let the piston move outwards until the intensity of 

radiation has diminished till it is exactly in equilibrium with that 

emitted by B. 
(3) Let the body B be placed at the end K and the plug C 

pushed in until it is in contact with B, the whole radiation inside 

the tube being absorbed by B. 
(4) Let the body A be substituted for B. 
By applying the laws of thermodynamics to this cycle Boltz¬ 

mann obtained an important relation connecting the energy of 

radiation per unit volume, the radiation pressure, and the temperature 

of the radiating body. 

Suppose when the temperature of the radiating body is T, that 

the energy of radiation per unit volume in the ether, when equilibrium 

has been established is ip, and the radiation pressure is f. 
Let Tt, T2 be the temperatures of the source and refrigerator, 

vlf v2 the volumes of the space enclosed by C at the beginning and 

end of the second process which is an adiabatic transformation. 

The energy received by the medium in the first step is ip^ 
and the work done in expansion is f±vv Hence the total heat received 
from A is (f± -f ip1)vv 

In the second step the work of expansion is equal to J*fclv 

and is equal to the loss of radiant energy ip1v1— ip3v2. 
In the third stage the work of compression is f2v2 and the total 

heat received by B is (/2 + tp2) v2. 

The principle of conservation of energy applied to the second 
process thus gives 

(106) tp2v2 =» 

A 

B 

Mg. 35. 

K S 

C 
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While the analytical expression for the second law (the cycle 
being reversible) namely 

Qi _Q±_ 
X x 

gives 

(107) % (/i+^i) % (A +^2) 
X " ~ ~T% 

Equations (106), (107) involve the volume v and are only true 
for adiabatic processes. By eliminating v we get a relation which is 
not subject to this restriction, f and tjj being only functions of T. 
Making Tx — T2 an infinitesimal of the first order in (106), (107) 
we have 

fdv — — vchp — ipdv, 

T[(f + ip)dv + vd(f 4* — v(f + X)dT = 0. 

Eliminating — from these equations we have 

(108) Tdf — (f + i>)dT= 0 

which is Boltzmann’s Equation. 

106. Stefan’s Law. If we assume with Maxwell that the radiation 
pressure is equal to one-third the energy per unit volume, that is 

f=X^jj we get Tdifj = 4:tydT or 

(109) T4 

or the energy per unit volume in the ether in the presence of a 
"black body” varies as the fourth power of the temperature. 

This is known as Stefan's Law and has been verified experi¬ 
mentally. Conversely if Stefan’s Law and the formula for the radiation 
pressure be assumed as the result of experiment, we have a con¬ 
firmation of our assumption that the laws of thermodynamics are 
applicable to the ether. 

According to Stefan’s law, the heat capacity of the ether per 
unit volume a: Ts. Under these conditions we may state that the 
temperature of the ether is T, this being the temperature of a "black 
body” in thermal equilibrium with the ether, and the radiation being 
assumed to be equally distributed in all directions. 

Stefan’s law is not a pure deduction from thermodynamical 

principles, for if we had assumed f=* ip instead of * we should 

have found <yz T2 instead of T4. But if Stefan’s Law be assumed 
it affords a measure of absolute temperature which is independent of 
any material body. 
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107. Entropy of Mack tody radiation. If, following the old 
practice, we define entropy for reversible processes by the relation 

cJS = -yjr* the entropy, per unit volume, of black body radiation may 

be obtained by considering a black cavity the temperature of whose 
walls is gradually raised from the absolute zero to temperature JO. 
Assuming Stefan’s Law ip = ItT* this gives 

(110) 
0 

where 8' represents entropy per unit volume. 
Referred to auxiliary temperature T, this represents a quantity 

of unavailable energy ip. Of this quantity ip represents the actual 

energy of the cavity, and the remainder - ip is equal to f and 

represents unavailable energy arising out of the radiation pressure. 
It is obvious that if we wish to transfer the energy of the cavity to 
a body at temperature T, work ip must be done by the radiation 
pressure, so that the total energy transferred which is unavailable at 
temperature T is equal to ip + f- 

If however we start with the second definition of entropy, it 
follows conversely that the entropy of the black cavity radiation is 

in every instance equal to —and this conclusion is independent 

of Stefan’s Law. 

108. Impossibility of increasing availability by optical methods. 
If it were possible to cause heat to pass from a colder body to a 
hotter one by means of burning glasses, concave mirrors or indeed 
any optical combination, we should have an exception to the principle 
of degradation of energy, and should find it easy to obtain energy 
in the form of work from a thermically homogeneous system. That 
this is impossible was shown originally by Clausius in the case in 
which the extreme media were the same; and it was also shown that 
if the conclusion applies equally when the extreme media are different, 
then the intensity of emission of a body in any medium must be 
proportional to the square of the refractive index for that medium.1) 

When a ray falls on a surface separating two media, part is 
reflected and part refracted. It is obvious that the existence of the 
reflected portion reduces the efficiency of a burning glass for the 

1) Pogg. Ann. CXXI (1864) 1. As an example of the property, it would 
be impossible to heat a body to a higher temperature than the Sun by con¬ 
centrating the Sun’s rays with a burning glass, even if atmospheric absorption 
did not exist. 
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purpose of concentrating heat, and it is to be noticed, further, that 
the splitting of the incident ray into two parts is in general irre¬ 
versible] for, taking light of a certain definite wave length, a definite 
relation exists between the amplitudes, phases and polarisation of the 
reflected and refracted components, and unless this relation were 
preserved when the paths of the rays were reversed, they would not 
recombine to form a single ray. If such recombination were possible1 
in the case of radiations emitted by different bodies we might have 
a means of restoring lost availability. We shall therefore assume, 
to shorten the discussion, that the loss of availability can in no 
case be less than it would be in the case of purely hypothetical 
media which refracted the whole of the incident light. Such a 
medium we might call a “perfect refractor”, a “perfect reflector” 
being similarly defined with reference to reflection. 

Let ds and ds! be elements of area of two radiating surfaces, 
and suppose that the rays from a point on ds which reach the 
element dsr lie within a cone of solid angle dco1 whose axis makes 
an angle € with the normal to ds. Then if I bo the intensity of 
normal radiation from ds, the total quantity of radiation falling on 
dsr is 

(111) dQ = I cos € ‘ dcods. 

With corresponding notation for the element ds*, if d Q1 denote 
the quantity of radiation received from ds on ds\ 

dQ1 = I1 cos sf • dco'ds1. 

The condition that dQ = dQ1 requires that 

I cos $ dads = I1 cos s1da'ds'. 

If the extreme media are the same, /, I1 are, for perfectly 
radiating bodies, functions of the temperature alone, and in order 
that heat equilibrium may represent equality of temperature we have 
to prove the relation 

(112) cos sdads = cos s1 da1 ds1. 

In the case of direct radiation through a homogeneous medium 
if r be the distance between the elements 

da 
dsf cos s' 

da1 
ra ' ” ” ra 

cos sdads ==* cos s'da'ds1. 

It follows from this that the ratio 

cos sfd(of ds' 

cos sdcods 
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is equal to unity for all pairs of points in the case of rectilinear 
propagation of light in a homogeneous medium. We may say that 
the product of the cross section ds1 cos sr into the solid angle dco1 

of a pencil is invariant at all points of its course in the same medium. 

109. Case of a perfect refractor. It now remains to show how 
this ratio is altered at a reflecting or refracting surface. 

Let d<5 be any element of the refractive surface, yu, yc1 the indices 
of refraction, qp, cp1 the angles of incidence and refraction, the 
azimuthal angle measured about the normal. 

Then the solid angles dco, dco1 of a small pencil before incidence 
and refraction may be taken to be 

dco = sin cpdcpdty, dco1 = sin cprdtp1dip1. 
But . , . , 

[i sm cp = yt,sm <p , 

•' ■ yc cos cpdcp = yL1 cos cp1 dtp1, 

yu2 cos cpdadti = yb12 cos cp'dco d<5 

so that the ratio of the differentials 

cos cp'dca’dd   il2 

cos cpdtoda y'~ 

and when dQ = dQ1 we must have 

(H3) 

By extending this result to any number of reflections and 
refractions, we see that the ratio 

yj2 cos srdcor dsf 

yu2 cos sdco ds 

at any two points traversed by the rays is equal to unity, or the 
product of the cross section 
into the solid angle of a 
pencil at any point is in¬ 
versely proportional to the 
square of the refractive 
index (Fig. 16). 

It should be noticed ds 
that Helmholtz's formula for 
the magnification of an 
optical combination is con¬ 
tained in this result. 

110. Entropy of directed radiation. From the last article it 
follows that if radiation of intensity I is emitted in a medium of 

Pig. 16. 

index yi, the quantity -j is an invariant in the sense that it represents 
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a quality of the radiation winch, is unaltered by perfect reflection or 

refraction or direct propagation. So long as this is the case the trans¬ 

mission of the rays does not necessarily involve passage from a hotter 

to a colder body. 

If we imagine a perfectly black body of finite size emitting 

radiation, then at any distant point the directions of the rays will 

be confined to the solid angle which the body subtends at that point. 

By means of a suitable combination of perfect reflectors or refractors 

or both we may regard it as theoretically possible to make any 

portion of the rays converge into a smaller area in such a way that 

this solid angle is increased to 2%. When this is the case there 

will be equilibrium of radiation at the surface of convergence if the 

temperature of a body placed there is equal to that of the source. 

On the other hand, if the source begins to send out radiation 

into empty space, radiation pressure will be set up where it did not 

previously exist, representing an increase of unavailable energy and, 

therefore, of entropy. 

The entropy per unit volume at any point of the ether is a 

measurable quantity in the case of a radiating sphere surrounded by 

a perfectly reflecting concentric spherical surface. This case differs 

from the previous one in that we have everywhere to deal with 

emitted and reflected radiation of equal intensity confined within the 

same limits of direction. 

If the radius of the reflecting sphere is decreased from r to 

r — dr, the radiation between these distances will be absorbed by 

the source, and work will be done against the radiation pressure. 

It follows that the entropy per unit volume again takes the form of 

§ 107, viz S = (—y"— where $ is the total intensity of radiation, f 

the radiation pressure, and T the temperature of a perfectly black 

body emitting radiation of the intensity in question. 

111. Summary of irreversible radiation phenomena. The irre¬ 

versible processes connected with radiation may generally be summed 

up in TlcincVs statement that emission without simultaneous absorption 
is possible but irreversible, absorption without simultaneous emission is 
impossible. 

Although the generation of entropy due to outward radiation 

considered in the last article may be naturally regarded as taking 

place in the ether, it will be seen that the change is really a direct 

consequence of this assumption. If it were possible to conceive a 

body at temperature 2 capable of absorbing without emitting the 

radiation due to that temperature, any portion of the ether could be 

cleared of radiation without doing'work against radiation-pressure, and 



XI. THERMODYNAMIC FORMULAE OF a SIMPLE SYSTEM. 107 

without involving passage of heat from a hotter to a colder body, 
so that the gain of entropy in question would then cease to exist. 

Another case of irreversibility occurs when a body absorbs* 
radiation in certain directions and emits radiation in all outward 
directions without gaining or losing heat on the whole. Here the 
invariant of the radiation is changed, and the scattering of light by 
small particles affords a familiar instance. 

A third case, not yet considered, arises in connection with 
imperfectly radiating or absorbing bodies. A discussion of such 
bodies will be found in elementary treatises on light and need not 
be given here. For our purpose the phenomena are sufficiently 
represented by considering that the invariant of the emitted radiation 
is the same as that of a perfectly black body of lower temperature 
while the invariant of the absorbed radiation is the same as that of 
a perfectly black body of higher temperature. The irreversible 
changes are thus measurable in terms of heat taken from a higher 
to a lower temperature, and therefore they define increases of entropy. 

All these cases are covered by Planck’s general statement quoted 
above. Whether all the irreversible phenomena of the universe can 
be deduced from this statement by the consideration of intermolecular 
radiations is a difficult question to answer, especially in connection 
with such phenomena as diffusion of gases. 

Note. In this chapter no attempt has been made to give a 
complete account of the thermodynamics of radiation. The proof of 
Maxwell’s expression for the radiation, and all considerations relating 
to the distribution of light-waves of different frequency in black 
cavity radiations have been omitted. For a fall discussion of these 
and other questions, and further considerations relating to the entropy 
of radiation especially as treated from a statistical stand-point the 
reader is referred to Dr. Planck’s recent treatise.1) 

CHAPTER XI. 

THERMODYNAMIC FORMULAE OF A SIMPLE SYSTEM. 

[CHAPTER III SHOULD BE REVISED BEFORE PROCEEDING FURTHER.] 

112. Deductions from the First Law. In Chapter III we showed 
that the various thermal differential coefficients of a body are not 
all independent but are connected by the formulae of the Differential 
Calculus for change of the independent variable. The laws of thermo- 

1) Vorlesungen fiber die Theorie der Warmestrahlungen. Leipzig, Barth, 1906. 
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dynamics introduce two new quantities, namely, intrinsic energy and 
entropy, and differential coefficients involving these quantities fall 
under the general formulae there discussed. 

We now have, however, the further properties that in reversible 

changes cl Q — dW and are perfect differentials of these two 

quantities, and we may apply the well known analytical theorem, 

that if Mdx + Ndy is a perfect differential then ^ * 

Applying this property to (IQ — dW and assuming x and y to 
be independent variables by which the state of the body ia defined, 
Clausius gives the formula 

^ ' dx dy dy dx dx dy dy dx 

Taking a unit mass of fluid as a simple system we may put 
dW= pdv, and for the added heat which we now call dq, if we 
write as in Chap. Ill 

(27) dq = l0dv + yrdT} 

(28) dq~lpap + yPdT, 

(30) dq = Mdv + Ndp, . 

we obtain the particular forms 

" 'dT " 8i>’ 

(116) 30p + *) -dv» ' 
(.no; ~ff~' ~ dp’ 

dm d n , , 
017) Yf dv ~lj 
and since each of these expresses the condition that the same expression 
should be a perfect differential, each is analytically deducible from 
the others as can be readily verified. 

113. Deductions from the Second Law. Again making a perfect 

differential, we obtain in the first place Clausius’ formula 

/II ON 0$._dQ __ 1 /dQ d T d Q d T\ ■ 
^ ' dx dy dy dx T \dx'k dy dy dx) 

and in the second place the particular forms 

* dl 2 f)y. 

N dT 
T dv 

M dT 
~T dp' 

(121) 
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Combining these with the previous 

(122) 
Tf d dw ? 0W\ _ 

dy dy dx)~ 

o
>

|«
 

<Uo II 

(123) 
/dpi 
\d f) v 

K 
t’ 

(124) (dK) = 
\AT) v 

b 
T ' 

(125) Md,T-N 
dp 

dT ___ 
OV 

dy dx ' 

■ (126) 

(127) 

T. V 

From (115), (123) and (116), (124) we deduce further, the relations 

dvB ( 7°)=r(d*p'\ ^ 
\ dv J t [dry*,’ 

(dYA i 
\dpjr -L\dfVp 

which are of use in experimental determinations of yp and yP. 

114. Maxwell’s Four Thermodynamic Relations. The last two 
articles, combined with the results of Chapter III, will show how 
easy it is to write down an almost endless number of thermodynamic 
formula. In order to evolve order out of the chaos which would 
very soon arise, it is best to introduce the thermodynamic potentials, 
which for unit mass we denote by 

n or f,„, f„ fp and f, or 

Applying the conditions for a perfect differential to the differentials 

of these functions, as given by § 112 and writing for ds 

(128) 

(129) 

(130) 

(131) 

of which (129) is identical with (123) and (130) with (124). Equation 
(123) is moreover the equation (22) given in Chapter II § 29 and 
known as Clapeyron’s Equation. 

These four relations are mutually dependent for if (128) is satisfied 
Tds —pdv is a complete differential, therefore (e.g.) Tds —pdv — d(Ts) 
is a perfect differential giving (129). 



110 XI. THERMODYNAMIC FORMULAE OF A SIMPLE SYSTEM. 

These relations are known as “MaxivelVs four thermodynamical 
relations”, and they may be readily interpreted in words. 

Attending only to the signs of the differential coefficients, we 
draw the following conclusions. 

(a) If the substance expands adiabatically, the temperature will 
increase or decrease as the volume increases, according as addition of 
heat decreases or increases the pressure at constant volume. 

(b) If the substance is compressed adiabatically, the temperature will 
increase or decrease with the pressure, according as addition of heat 
increases or decreases the volume at constant pressure. 

(c) If the substance expands at constant temperature, it will absorb 
or give out heat as the volume increases, according as the pressure at 
constant volume increases or decreases with the temperature. 

(d) If the substance is compressed at constant temperature, it will 
absorb or give out heat according as the pressure increases as the volume 
at constant pressure decreases or increases with the temperature. 

As an example we may take the case of water below the tem¬ 
perature of maximum density. Here when the pressure is kept 
constant the volume decreases as the temperature increases and “con¬ 

versely”. Hence (Jppj and are both negative, and the second 

and fourth relations give negative and positive. We 

conclude that in such a substance an increase of pressure causes cooling. 
The equations moreover give an exact numerical relation between 

the phenomena correlated by them. For example (124) may be stated 
quantitatively thus: “The latent heat of expansion at constant tem¬ 
perature is equal to the product of the temperature into the rate of 
increase of pressure per unit increase of temperature at constant volume 

For a system defined by n -f 1 variables viz: T or S, and either 
the n generalised coordinates x1,x2,...xn, or the corresponding 

generalised forces, X1; X2, .. . Xn, we get y (w -f l)n independent 

relations from the condition of integrability of the differential of any 
thermodynamic potential. 

We thus obtain the four sets 

<t&T\ \ _ (dXA taxs (dX^ 

\dx1 j \dSJx’ \ dx^j *$,x 1 \ dxj 

(dS\ \ __ (dXA (dXp \ _ 
\dxxj \dTJx \dx^ ' T,xl \dxv ) } 

/dS' \ _ __ (dxi\ / dxx' \ __ (dxz' \ 
\dXv It, x2 l dTlx \dX^ It,x1 \dXv ) 9 ' T,X% 

tar \ ___ (dxX (dx^ \ __ fdx \ 

[\dXv Is, X, l dS )x Ux* I S,Xx Ux,, ls,x. 

(132) 
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As a further example, we may consider the case of an elastic 
wire subject to longitudinal tension only, here we obtain the following 
relations (see § 102 for notation) 

\dc„J 
'x' S 

L(d£A = + (Am . 
<j\dTJa„ ' \do„) „ 

These equations, like Maxwell’s ordinary relations can be tested 
experimentally. For example the last equation but one asserts that 
a sudden (adiabatic) increase of tension will increase or lower the 
temperature of a wire according as the addition of heat produces 
contraction or elongation under constant tension. The former is the 
case in caoutchouc. 

115. Geometrical proof. Maxwell’s four relations may also be 
deduced from the property that the areas of the pressure-volume and 
temperature-entropy diagrams corresponding to a Carnot’s cycle are 
equal and therefore, substituting these variables in equations (41) 
each member becomes numerically equal to unity. The question of 
sign is easily settled. 

116. Expression in terms of thermodynamic potentials. A further 
simplification and coordination of formula is effected by expressing 
all the thermodynamic magnitudes in terms of one of the thermo¬ 
dynamic potentials and its derivatives with respect to the corresponding 
independent variables. There being four potentials for a simple 
system, every expression can thus be expressed in four different ways, 
and there will be a close analogy between the expressions for (e. g.) 
the specific heat at constant pressure referred to independent variables 
p, T and potential \pT and the specific heat at constant volume 
referred to independent variables v, T and potential f0 T. For the 
sake of brevity we only consider here expressions in terms of the 
two more important potential functions \v and (referred to unit 
mass) in which the temperature is the other independent variable, 
and these we write side by side in order to being out more clearly 
the kind of principle of duality between them. 

fa-Formulae. 

Specific heat at constant 
volume 

Specific heat at constant 
pressure 

fp-Formulae. 

Specific heat at constant 
pressure 

.. _ W \ _ rjfi fp 

7p \dTjp \dTJj) X V T2 
Specific heat at constant 

volume 
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ds dp ds dp 
_ T'df Fv ~ Fv Ft 
~~~1 dp 

dv 

(by Chapter III Formula 40 d) 

0ff, f f, / ^2f 
drdv* 

7p= —1 — 

(TTY 
\dTdiJ 

FI 
'Fi* 

moreover 

n ~ V* ’ 
■Fd Tdv 

“Ff7 
dv* 

- 1 (IS' 
dp 
dv 

Latent heat of expansion, at 
constant temperature 

T ds 
L 

" dv 

(d?\ 
\dv) 2 

rp '& 

dTdv 

n,_ 
rp dTdv 

+ 1 
•<!> 

dv* 

Coefficient of Expansion under 
constant pressure 

7o T(rr), 
ds dv 

rp d J dp 
ds dv 
dp dT 

dp 

(by Chapter III Formula 40 d) 

d%?>% _(8%y 
rpdT'dp*' YdTdp) 

moreover 

T 

r°-yP = T 

dp* 

(y /dv\2 
VdidpJ <h>i _,T FF 

o% -~+i -dv - 

dp2 dp 

Latent heat of pressure-vari¬ 
ation at constant temperature 

In T ?s 
d p 

(dv\ 

\ dp)r 

asf 
_ t_'', 

di'dp’ 

rP d Tdp 

" ' 
dp- 

1 f dv\ 
F\dT); 

For constant p we have found 

0 

whence 

n 
J._L . 

dvdT dv 
(dv\ 

F \cll% 

n, 
dvd T 

* “ ~ —gvj- 

® dv* 

on the other hand a1 as just defined 
opposite is given by 

ssi 
f__ dvdT 

" \df)9- dl. 

dv 

P 

Temperature Coefficient of 
pressure at constant volume (simi¬ 
larly defined to a) 

«' = 1 ((lp). 
p \dTjn 

For constant v 

d*f„ d* f 
() — \(L i ! 

dpd T ^ dp 
whence 

a*f, 
, _ _ dpd T 

— 

b, fdp\ 

t \d TJ „ 

P dp1 

on the other hand the coefficient 
of expansion is given by 

1 f cl V \ _ 

V \dTJp = 
dpd T 

k,. 

dp 
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ns taut temperature 

dp 
dv d«2 

nodulus of elasticity is 

'(H)/ 
asl. 
d v* 

nodulus of elasticity at 

itropy is whence 

~dT* 

At constant temperature 

dv 
- + dp ‘ dp2 

The modulus of elasticity is 
therefore 

df 
dp 
dT 
Cp~ 

The modulus of elasticity at 

constant entropy is v ^ ’dp\ 
dv /« i or 

[II Formula (40 d) 11 
-f-S where 

(£) 

p ds dp ds 

\dpj» 

dv ds dv ds 
v dT ~~ dT Tv /dv\ bp dT dT dp 

ds \dp)s ~~ d s 
dT dr 

0*f, (Z%\* 
d T3 dv* \dvd"Tl 

1 

_ j br- dp- \dpdf) 

'p 
dT2 

insform any other partial 
l coefficient we refer to 
variables by the formulae 
ad finally substitute 

To transform any other partial 
differential coefficient we refer to 
T andp as variables by the formulae 
of § 34 and finally substitute 

ai’ & 'dv 
df, 

T + ?'"- + dp 

Codifications in certain irreversible processes. The expressions 
§ 112 are assumed on the hypothesis that the small change 
iT) is reversible and that dq represents heat communicated 
rstem from without. The six coefficients le, ... are 
unctions of any two of the variables (p, v, T) by which 
of the system is defined. 
e case of intrinsically irreversible processes by which heat 
ed into work in the interior of the system, by friction, 
or other causes, (as explained in § 81) our formulae require 
>nsidered and modified. 
general rule a system does not remain homogeneous under 

imstances, and moreover its parts are usually in motion 
Thermodynamics. n 
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among themselves. We may however apply the usual methods of 
analysis by supposing the system divided into differential mass 
elements. The kinetic energy of dm due to the motion will be 
a quantity A'dm in which k is calculable by the methods of hydro¬ 
dynamics. Moreover the intrinsic volume v of unit mass has a 
definite value for every differential element, and we shall assume the 
same is true of temperature T, and that the temperature at a point is the 
same in all directions. The following investigation will then refer 
to the progress of events in a differential mass-element of the system. 

If the substance when at rest obeys the equation 

f(j?> v> t) = ° 

this equation can be used to define the pressure at any point at 
any instant; in the case of a viscous fluid this will be the mean 
pressure considered in the theory of viscosity, and will be different 
from the actual stresses at that point. 

If instead of dq we write dq in equations (27, 28, 30), for example 

(133) dq^ldv + yvdT 

dq represents the quantity of heat which would be required to produce 
the transformation (dv, dT) by perfectly reversible processes. 

We use dq as usual to denote the quantity of heat received 
from without, and we may put 

(134) dq = dq + dh. 

The quantity dh, in accordance with § 81 will be defined as the 
quantity of heat generated in the interior of the system, and we 
notice that it is given by 

(135) dh = lvdv + y0dT — dq. 

Let div be the external work done by the substance, k the 
kinetic energy due tq the motion of its parts among themselves. 
Then if we put 

(136) ds = dq — dw 

ds represents the quantity of energy communicated to the substance 
from without. 

Again if we put 

(137) du = dq — pdv = (lv — p)dv + yvdT 

du represents the increase in the intrinsic energy of the substance, 
i. e., in the energy depending on its volume and temperature. 
Because the coefficients lv and are functions of v and T defined 
by the equations of reversible thermodynamics, du is the perfect 
differential of a function u, which is the same function of v and T 
as in reversible thermodynamics. 
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Now the energy communicated to the system from without is 

partly converted into kinetic energy of agitation, and partly into 

intrinsic energy, therefore by the Principle of Conservation of Energy 

(138) ds = die + du. 

Hence 

(139) dq — dw = die + cZq — pdv, 

whence 

(140) pdv — dw = die + dh. 

If the initial and final kinetic energy is zero we have 

(141) J*jpdv — J*dw =j*dh. 

The left hand side of this equation represents the quantity of 

work energy lost in the interior of the system, and the right hand 

the quantity of “internal heat” generated irreversibly in the system, 

and we notice that these are equal, as they should be. 

The difference between pdv and w may represent work 

done in agitating or stirring the system as in Joule's experiment, 

or it may represent work energy lost by the substance in flowing 

from a place of higher to one of lower pressure, as in the case of a 

gas rushing suddenly into a vacuum or passing through a porous plug. 

It will thus be seen that the equations which we have obtained 

so far are consistent with (a) the principle of Conservation of Energy, 

and also with (b) the axiom that the intrinsic energy of a simple 

system (excluding kinetic energy of agitation) is a function of its 

volume and temperature alone. 

We shall now show how equally consistent results can be obtained 

in connection with the entropy - properties of the particular system 

under consideration. If we put 

(142) ds 
l9dv + y,dl' 

T 

ds will represent the change of entropy per unit mass if the trans¬ 

formation dv7 dT is reversible. On the hypothesis that the entropy 

of the system at any instant depends on the actual state of the 

system at that instant and not on its previous heating, we must 

assume the above expression to represent the change of entropy 

whatever be the means by which the change is effected, so that we 

now have with the above definition of cZq 

8* 

(143) 
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The entropy per unit mass imported into the system from without 

is equal to d<5 where 

(144) d6 — 
dq 

~T‘ 

The difference represents the entropy per unit mass generated in 

the system and is by (134, 140) given by 

dh pdv — dw — die 
(145) 

or 

(146) 

ds — d(5 = 

ds = 

T 

pdv — dw- 

T 

- die -f- dq 

T 

Now let T be taken as the standard temperature of a refrigerator 

used in defining available energy. 

Then pdv — dw denotes the quantity of potential energy lost 

in the interior of the system, and this energy is all available energy. 

Also — dh represents the loss of kinetic energy which by previous 

conventions is to be regarded also as available energy, hence 

pdv — dw — dh represents the total quantity of energy rendered un¬ 

available within the system. Also dq represents energy imported 

into the system which is unavailable at temperature T. Hence 

pdv — dw — die -i- dq represents the total increase of energy which is 

unavailable at temperature T, and therefore 

increase of energy unavailable at temperature T _ 

Hence the entropy defined by (142) satisfies Definition 2 of 

Chapter VII, and conversely if Definition 2 be assumed the entropy 

will satisfy equation (142) and will be a function only of the coordinates 

([v, T) of the system, and its change in any small transformation 

(dv, dT) will be independent of whether that transformation is 

a reversible one or an irreversible one of the particular kind here 

considered. 

CHAPTER III. 

PERFECT GASES. ’ 

118. Definitions of a perfect gas. The earliest experiments with 

gases led to the inference that the majority of gases obey the 

following laws, provided that their states as regards pressure and 

temperature differ considerably from that at which they liquefy. 

1. Boyle's Law or Mariottds Law. When the temperature is 

constant the volume varies inversely as the pressure. Hence pv = con¬ 

stant when T = constant, whence generally 

(A) pv = f(T), a function of T. 
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2. Joule's Law. All the work done in compressing a gas at 

constant temperature is converted into heat, and conversely when the 

gas expands at constant temperature the quantity of heat absorbed 

is equal to the quantity of work done. 

3. Clausius' Laiv. The specific heat of a gas at constant volume 

is independent of the temperature. 

More exact experiments show these laws to be only approximate 

(Chapter I § 10) but the properties of gases are greatly elucidated by 

studying what would happen in an ideal substance which obeyed them 

exactly. 

A perfect gas is an ideal substance which can be defined in two 

ways. According to one definition, a perfect gas is considered to be 

a substance which conforms accurately to the first and second of these 

laws, according to the other definition, adopted by Clausius, a perfect 

gas is considered to be a substance which obeys all three laws. 

119. Expansion of a perfect gas. We shall now deduce the 

principal properties of a perfect gas assuming in the first instance 

that it obeys Boyle’s and Joule’s Law only. When a unit mass of the 

gas expands slowly at constant temperature we have by putting dT= 0 

ia equation (27) di-l.iv.' 

But from Joule’s Law in this case 

therefore 

(148) 

dq ~pdv 

l* =jp. * 

From Clapeyron’s Equation (22) however 

(149) 
( dp \ __ __ p 

By integration it follows that when v is constant p is proportional 

to T. Next, supposing v may vary, and combining this result with 

Boyle’s Law, we have pv proportional to T or 

(150) pv = BT. 

It follows that the absolute temperature of a perfect gas is 

proportional to the volume when the pressure is constant, and to the 

pressure when the volume is constant. The coefficient of cubical 

expansion of a gas at constant pressure is given by 

(im) 
and therefore at the same temperature, this coefficient of cubical 
expansion is the same for all perfect gases. This result is known as 

Charles' or Gay Lussac's Law. 
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A perfect gas contained in a vessel in which it could expand or 

contract at constant pressure, would therefore constitute a thermo¬ 

meter for the measurement of absolute temperature, the volume of 

the gas being proportional to tbe absolute temperature. A second 

method would be to keep the volume constant, and take the pressure 

as a measure of the absolute temperature. 

When an actual thermometer is thus constructed with any real 

gas, we obtain a constant-pressure or constant-volume gas thermometer; 
a convenient plan is to employ ordinary air, giving an air-thermo¬ 
meter (cf. Chap. I § 2). From the considerations discussed above 

such a thermometer only gives an approximate absolute scale of 

temperature, the degree of approximation of this scale depending on 

the degree of approximation with which Boyle’s and Joule’s Laws 

are satisfied. 

120. The Universal (las Constant. In the first place it is obvious 

that the constant B for any gas is inversely proportional to the 

density of that gas at given temperature and pressure. 

In the second place it is readily proved from the dynamical 

theory of gases that in a medium consisting of a large number n 
of molecules moving about in all directions, the average kinetic energy 

of a molecule being L _ ^ 
p v = nJu 

and further for mixtures of different molecules L is the same for 

each kind, so that L may be put proportional to the temperature. If 

then M is the molecular weight of the gas, i. e. the ratio of the 

mass of a molecule of the gas to an atom of hydrogen it follows that 

(1) at given temperature and pressure, the number of molecules n 
occurring in a unit volume is constant, (2) the mass of unit volume 

is proportional to M, and (3) the volume of unit mass is therefore 
1 JR 

proportional to ^ Hence if B = JR will be a universal constant 

which has the same value for all gases. If moreover we write 

vr = Mvj then vr is the so-called molecular volume of the chemist, and 

with this notation we may write (150) in the form 

(152) pv! = RT. 

121. Specific Heats. In the first place we notice that 

(l53) h = “ P ' (— p) “ — V- ’ 

Again substituting l0 

we have 

(154) 

(155) ' 

chi = dq 

t - \ pj 

■■ p in the equation for the energy 

pdv = y0dT + (lv — p)dv 

du 
(du\ 

7vdT] 



SPECIFIC HEATS OF PERFECT OASES. 119 

Therefore u and also y0 are functions of T only. That is: The 
specific heat at cqnstant volume and the internal energy are functions of 
the temperature alone. 

Again from (32) 

(156) yp - yt = l (Jpj^ = p = B. 

That is the difference of the specific heats is for the same perfect 
gas a constant. For different gases the differences of the specific 
heats are inversely proportional to the molecular weights. 

If; moreover the gas satisfies Clausius' Law (this has not so far 
been assumed), the ttvo specific heats are both constant, and moreover 
the intrinsic energy of unit mass of the gas is given by 

(157) u — y&T + u0. 

We should naturally take the constant uQ to be zero, i. e. assume 
that at the zero of absolute -temperature the energy would vanish. 
It must not however be forgotten that a gas might possess forms 
of energy other than those considered in Thermodynamics, which did 
not vanish at the absolute zero, of temperature. So long as we are 
dealing with a purely hypothetical substance we may assume any 
such property we like, but this is not justifiable if a perfect gas is 
intended as an approximation to an actual gas. 

The equation of the adidbatics referred to p, v as coordinates is 
most easily obtained from the property that the ratio of the elasticities 
is equal to the ratio of the specific heats, i. e. 

By integration we obtain Poisson's equation 

(158) pvx — constant. 

The same property enables the specific heat ratio % to be found 
for any gas (not necessarily a perfect gas). This can be done in 
many ways, one of the simplest in principle being by determining 
the velocity of sound waves (a) in the gas, which, by the theory of 

sound, is given by a2 = — v2 K the value of is found by 

experiments on the compression of the gas (Boyle’s Law not being 
necessarily assumed) % is at once obtained. For most ordinary gases 
such as air or hydrogen ^ = 1-40 approximately, a result partly 
justified by the Kinetic Theory. 

122. Thermodynamic Potentials. To find the entropy, energy and 
thermodynamic potentials per unit mass of a perfect gas satisfying 
Clausius' Law we have 



ds 
dq 

~T 

AT , dv 
y'o ji *4" p ji 

dT , -r^dv 
-yv-jr + B--, 

(159) .' ■ s = yv log T + B log v + s0 

where s0 is the arbitrary constant of integration. 
Again 

u = y„T + u0, 

■' • f0 = u — Ts 

= ytT + «0 - T(y„ log T + B log v +*s0) 

(160) = y„ T{ 1 — log T) — BT log v + u0 — Ts6 

similarly 

fp ~ f» “h i5®; 

which when expressed in terms of T and p only becomes 

(161) = ypT( 1 — log T) 4- BTlogp + Tg0 

where the constant o0 is equal to s0 + JB log JB. 
It is to be noticed that the expressions for the entropy in terms 

of pressure and temperature or pressure and volume are 

(162) s = yp log T — B log p + 60, 

(163) $ = y» logy; + yp log v + |0, 

where 
io = so- log B=6a-yp log v. 

Finally the thermodynamic potential which is the energy 
expressed in terms of the volume and entropy, is given (for unit 
mass) by 

i 

123. Case of a gas rushing into a vacuum. Joule’s Law, as stated 
in § 111 was originally proved by the following experiment, due to 
Joule: Two vessels V' and V" were taken, one V! containing air 
and the other Vrf exhausted. They were connected by a stopcock 
and immersed in a reservoir of water. On opening the stopcock gas 
rushed from V1 into V" till the pressure was equal in the two 
vessels, and it was found (though later experiments showed the result 
to be only approximate) that no change of temperature occurred in 
the water. Hence (a) the temperature of the gas was unaltered, and 
(b) no heat was absorbed or emitted by the gas, so that no energy 
either in the form of work or heat passed in or out of the whole 
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space V1 + V". The whole energy of the gas when at volume Vr 
was therefore equal to its whole energy at volume Vr + Vn at the 
same temperature, and hence the energy of a given mass of gas at 
given temperature was independent of the volume. Taking the expression 

du = (l» — p)dv + ?odT 

this gives lD = p as in § 112. 
The relation between the increase of entropy due to the irre¬ 

versible expansion and the quantity of energy rendered unavailable 
is readily verified. Taking a unit mass of gas and putting v1 for V\ 
t\2 for V1 + Vn, the work of expansion at temperature T 

•y„ Vn 

= J*pdv = dv = BT(log log vf). 

This energy is all converted into a form which is unavailable at 
temperature T, and is equal (as it should be) to T times the increase 
of entropy, the latter increase being, by (159) 

I?(log v2 — log 

124. Gras mixtures. The definitions of a perfect gas in § 118 
define only the properties of a single gas. Consistently with these 
definitions and in view of the fact that a perfect gas is a purely 
hypothetical substance, we might assume the mixing of two or more 
gases to obey any laws we chose to assume, but the investigation 
would be uninteresting unless (a) the laws were of the simplest 
possible kind, and (b) they were verified at any rate approximately in 
the case of actual gases. 

In order that two gases may be mixed gradually, and without any 
accompanying mechanical or thermal effects, they must be first brought 
to the same temperature and pressure, and on communication being 
made between the vessels the mixture will take place slowly by diffusion. 
Experience with common gases then shows that, approximately, the 
temperature and pressure are unaltered by the process of diffusion, 
and therefore we assume the following as one definition of a mixture 
of perfect gases: 

When two or more gases mix slowly by diffusion at a given 
temperature and pressure, their volume remains constant and no heat is 
absorbed or given out. 

A corollary of this assumption is known as Dalton's law and 
states that: The pressure of a mixture of gases at volume V and 
temperature T is the sum of the partial pressures which the various 
constituent parts would separately produce if enclosed in a volume V at 
temperature T 
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For if Vf and V!t are the total volumes of the two parts before 
mixing at temperature T and pressure p, the pressures which the 
parts would have at the same temperature and at volume V equal to 
V! + V,! would bj the Boyle Mariotte Law be 

_ and 
yt _|_ yrt chUKL yt _j_ yn 

and the sum of these is equal to p. 
Let mr, mrt,... be the masses of the different components entering 

into a unit mass of the mixture. In the case of a mixture of two 
gases only we may write m' = x} mn = 1 — x. Let accented letters 
such as v! and vn denote the volumes per unit mass, and other thermo¬ 
dynamic quantities of the gases before mixing, and let unaccented 
letters refer to a unit mass of the mixture. Then if the mixing takes 
place at temperature T and pressure p 

pvr = B!T, pvn = Bn T 

v = m!v! + mnvn = %v! + (1 — x)vn. 

pv = xpv1 + (1 — x)pvn 

= xBrT+( 1 - x)BuT. 

Hence the constant B for the mixture is given by 

and 

Hence 

(165) 

(166) B = xB’+{ 1 - x)B". 

We now assume that the total energy of the gases is unaltered 
by mixing, i. e. that . , ^ N „ 

J u = xuf + (1 — x)u!f. 

Employing the expression u = 1 + u0 (157), and remembering 
that the last result is true for all values of T, we have 

= xu0f + (1 

; xyj + (1 

x)uQ", 

■ x) yv1J 

(167) 

(168) y, 

and in virtue of (156) 

(169) 7p = xyp! + (1 - x)ypn 

whence the whole heat capacity of the mixture either at constant pressure 
or at constant volume is the sum of the ivhole heat capacities of the parts 
before mixing. 

Substituting in the expression for the entropy in terms of pressure 
and temperature, we have 

(170) $ = {xyj + (1 — x)yj!) log T — {xB1 + (1 — x)Bn} log^ + tf0, 

that is the whole entropy of the mixture can only differ by a constant 
from the sum of the whole entropies of the parts before mixing, The 
constant difference C is given by 

(171) C=°60— {X<5q -f-‘(1 “ 
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From the laws of thermodynamics, this difference cannot be 
negative. As two gases at equal pressure and temperature in general 
tend to mix by diffusion, not to separate, the process of diffusion is 
irreversible, and we cannot ascertain at the present stage whether 
the change of entropy G vanishes or is positive. In order that any 
definite conclusions may be found it is necessary that the gases should 
be capable of being separated as well as mixed by reversible methods. 
In the case of actual gases the separation may be effected by lique¬ 
fying one of the components or by placing the mixture in the presence 
of a liquid which readily absorbs one component but not the other. 
What we have shown is that if an increase of entropy takes place on 
mixing, this change is independent of the temperature and pressure at 
ivlvich mixing takes place. 

This conclusion is justified by the following general reasoning: 
It comes to the same thing whether we allow the gases to mix at. 
temperature Tt and pressure pt, or first alter their temperature and 
pressure to T2, p2, then let them mix and finally bring the mixture 
back to Tu pv 

It is further to be observed that as the thermodynamic phenomena 
presented by a given system are unaffected by the values of the 
integration constants in its energy and entropy, the value of the 
constant C does not affect any transformations which are unaccompanied 
by mixing or separation of the gases. 

125. Substituting in the formula for the thermodynamic poten¬ 
tial fp, this is given in terms of the corresponding potentials of the 
separate components at the same temperature and pressure by 

f, = *y+(l-a)f/-C'T 

subject to the condition p = = pn. 
If we require the entropy as a function of v and T or the 

thermodynamical potential f* the best way is to express s0 for the 
mixture in terms of 60 in equations (159, 160) which become 

(172) s = yv log T + B log + tf0, 

(173) f, = y,T(1 - log T) -BT log g) + - 1\. 

The corresponding expressions for the components are of course 
of the same form with accented letters. The condition of equal pressure 
for the mixture and components is given by 

v   vr   v" 
~B ~jf'" === B ” ’ 

(174) 
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If this condition is satisfied we have undoubtedly 

(175) f,-sf,'+(l -X)V'-CT 

a relation connecting the thermodynamic potentials fy of the mixture 
with those of its components at the same pressure. 

126. Physical evidence as to the value of the constant C. 
(a) From liquefaction of one of the components. We assume the 
following law as based on experiment: 

When a liquid or solid is in contact with its vapour at any 
given temperature, and the vapour is mixed with other gases, the 
partial pressure of the vapour is the same as if the other gases 
were absent. 

Thus if a vessel contains air and water at a given temperature, 
the partial pressure of the water vapour mixed with the air is the 
same as the pressure of the vapour in contact with the water would 
be if the air were exhausted. The actual pressure in the mixture is 
the sum of the partial pressures of the air and the vapour. The 
density of the vapour is the same in both cases. 

Now let there be a mixture of two gases G1} tr2, of which Gq 
is more readily liquefied than 6r2, and let the original whole volume 
of the mixture be V. 

Let the mixture be cooled till the components separate out in 
the liquid form, one liquefying before the other and the two being 
kept separated. Let the components be then evaporated in separate 
vessels. Then in the course of evaporation the partial pressures p1 
and p2 of the component gases at any temperature T are the same 
functions of T in the separated gases as in the mixture. 

Assume further that the volumes of the liquids are negligible by 
comparison with those of their vapours. 

Then the work done in compressing the mixture at any temperature 
will be equal to the works of expansion of the parts at the same 
temperature, if the volume of each part is equal to the previous 
volume of the mixture, as is evident from the relation (pl + pf)dV 
= PidV + p2dV. Again, assuming the constancy of the specific heats, 
the heat given out in cooling the mixture by an amount dT is equal 
to the heat absorbed in raising the components through the same 
temperature interval. 

Assume further that. the latent heat of evaporation of either component 
is unaffected by the presence or absence of the other. 

Then, if the separate constituents be finally each brought to 
volume F, the entropy changes in the processes of expansion will 
exactly balance those in the processes of condensation, and the whole 
process will be perfectly reversible and we conclude that: 
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The whole entropy of a mixture of gases at temperature T 
and volume V is equal to the sum of the whole entropies of the 
separate components at the same temperature and irhole volume V. 

Remembering that when the gases were allowed to mix by 
diffusion; the pressures of the components were equal to that of the 
mixture, and the whole volumes Y\ V" were together equal to the 
volume of the mixture we see that: 

i When two gases at equal temperature and pressure mix by 
diffusion, the loss of available energy and consequent gain of entropy 
is the same as would occur if each component were to expand by rushing 
into a vacuum till it occupied the same volume as the mixture. 

(b) From diffusion through a membrane. There are certain 
substances which allow some gases to pass through them more easily 
than others, and these lead to the conception of an ideal substance 
which is pervious to one gas and perfectly impervious to another. 

In this case we make use of the result of experiment, according 
to which: 

When a gas is in equilibrium on the two sides of a membrane 
through which it can pass freely, the partial pressures of the gas are 
the same on both sides, even if the gas is mixed with other gases on 
one side only, so that the total pressures on the two sides are different. 

By means of two ideal membranes, one of which is pervious only 
to one component and the other pervious to the other component we 
could separate or recombine the two gases reversibly without 
expenditure or absorption of work, the volumes of the separated 
gases would then be equal to that of the mixture and the pressures 
of the separated gases would be equal respectively to their partial 
pressures in the mixture We conclude that under these circumstances 
the whole entropy of the mixture would be equal to the sum of those 
of the separated gases. 

127. Corrected Relations between the Potentials. Value of C. 
We now see that the relations between the potentials per unit mass 
of the mixture and its constituents are connected by the relations 

(176) f.-af.'+Cl-aOV' 
cm) f„-*f;+(i-*)f/ 
provided that the whole volumes of the mixture and' the two components 
are equal. The volumes and pressures per unit mass are then connected 
by the relations 

= XV (1 — x)vh 

p_ 
xB’ 

r 
(1 -x)B"7 

the last necessarily involving the relation, 

p =** p! + pn, since B =» xB! 4- (1 ■ x)B". 
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It is easily seen that the constant C in the previous equations 
is equal to 

(178) B log B - xB' log xB} - (1 - x)B" log {(1 - x)B"}. 

This 

(179) C = xBr log 

may be written 

xB7 

-a)B'r 
+ (1 — %)B" log 

xB! + (l-x)B' 

(1 ~~x)Bn 

and is obviously positive, the arguments of the logarithms both being 
greater than unity. 

As a matter of fact these formulae are cumbersome to remember, 
and it is much more convenient to remember the statement that 

The whole thermodynamic potential of a gas mixture at given volume 
or pressure is the sum of the corresponding potentials of the components 
at the same temperature and whole volume. 

The same is also true of the whole energy of the gas mixture. 
The energy of a perfect gas depending only on its temperature, it 
makes no difference so far as energy is concerned whether the gases 
are mixed as in § 124 or as in § 126. 

128. Note. The qualitative property that diffusion through a 
membrane may give rise to mechanical effects in the form of diffe¬ 
rences of pressure is of course easily verified. Since these differences 
can be utilised for the production of external work, although every¬ 
thing is at the same temperature, it follows that the separate gases 
possess available energy which is lost when the gases are mixed by 
diffusion without a membrane by the method of § 124. In regard to 
the difficulty of making quantitative experiments, experience does 
warrant the belief that a gas never passes through a membrane 
from a lower to a higher partial pressure even when the pressure of 
another gas would tend to force it through. In evidence of this 
property, Planch quotes his remarkable experiments made at Munich 
in 1886, in which a platinum tube originally containing hydrogen at 
atmospheric pressure was heated till the platinum became permeable 
to hydrogen, and it was found that almost the whole of the contents 
diffused out leaving a high vacuum. 

It is obvious too that the ideal usemi-permeable partition” (so 
called) postulated above would afford the maximum efficiency either 
in separating mixed gases or in obtaining mechanical work from them 
while mixing. Moreover an actual partition or membrane will be the 
less efficient the more its properties differ from the ideal membrane. 
But this difference must be regarded as a peculiarity of the membrane 
and not of the gases, and the entropy changes caused by an imperfectly 
efficient membrane must be regarded as distinct from those necessarily 
associated with the gases themselves. 
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CHAPTER ML 

DETERMINATION OP THERMODYNAMICAL MAGNITUDES. 

129. Determination of absolute Temperature. Hitherto we have 
regarded absolute temperature, entropy, energy and thermodynamical 
.potentials from a purely theoretical stand-point. We now proceed 
to show that these quantities can be determined experimentally for 
any particular substance. 

The definition of absolute temperature in thermodynamics being a 
purely theoretical one, it remains to be shown that absolute temperatures 
are capable of being determined experimentally^ The actual details 
of the experiments belong to the experimental study of heat rather 
than to theoretical thermodynamics; what we have to show is that 
the determinations can be effected b}r methods that are experimentally 
practicable. 

Most of these methods depend on Clapeyron’s equation or its 
analogue, which may be written 

in which it must not be forgotten that the latent heat and coefficient 
lp are referred to the work unit of heat and are’ obtained from the 
corresponding coefficients referred to the calorie by multiplying by 
the “mechanical equivalent” of the calorie, the determination of which 
was discussed in Chap. II. 

The form of equations (180) indicates the presence of an arbitrary 
constant of integration in the value of log T, giving an arbitrary 
factor in the value of T; corresponding to the fact (§ 28) that the 
thermodynamic definition does not determine the unit or degree of 
absolute temperature but merely the ratio of the absolute temperatures 
of two different states of a substance. 

We have seen in the last chapter that a perfect gas would afford 
a measure of absolute temperature when used either as a constant 
pressure or a constant volume gas thermometer. If therefore an 
actual gas is used in either of these forms the small corrections which 
will have to be supplied to reduce its readings to the absolute scale 
will depend on 

(a) the deviation of the (p, v) equation of its isothermals from 
the Boyle Mariotte Law, 

(b) the deviations from Joule’s Law. 
Now the determination of the isothermal equation so far as is 

postulated above does not presuppose a knowledge of the absolute 
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scale, for constancy of temperature can be shown by any thermo¬ 
meter whatever. If t is the measure of temperature indicated by 
such a thermometer, it is obviously experimentally possible to determine 
for the gas an equation of the form 

(181) tXlh 0 = 0 

in which t is a definite but for the present unknown function of the 
absolute temperature T. As an example of the result of such a 
determination we might cite Van der Waals’ empirical formula in the 
form 

(182) (i) + 2L)(,_&) = (p(T) 

the form of cp(T) being as yet undetermined. 
To determine the deviations from Joule’s Law one of the most 

usual methods is that adopted in the classical experiments of Joule 
and Kelvin of which we now proceed to give such details of principle 
as are necessary to understand the theory. 

130. The porous plug experiments. A gas is allowed to flow 
steadily through a tube containing a series of holes or a porous plug 
in traversing which it undergoes a fall of pressure, and a certain 
quantity of mechanical work is done against the friction of the plug, 
the viscosity of the gas etc., the exact nature of such internal 
resistances being immaterial. We thus have a case of irreversible 
conversion of work into heat, and instead of the equations of reversible 

v thermodynamics, the modifications of § 112 are applicable. The 
effects observed consist generally speaking in a cooling of the gas 
which can be determined quantitatively in two ways: 

(a) The gas may be kept at its original temperature by enclosing 
the apparatus in a calorimeter, and the quantity of heat absorbed for 
every unit mass of gas that flows through the plug may be measured 
by the calorimeter and finally reduced to work units. 

(b) The pipe and plugs may be enclosed in a non-conducting 
envelope, the gas receiving no heat from without, and the difference 
of temperature on the two sides of the plug may be measured by 
an ordinary thermometer. 

The kinetic energy of the in- and outflowing gas is usually small 
enough to be neglected though, if desired, a correction for this could 
be easily applied. 

(a) Taking the first method, let % and p2j v2 be the pressure 
and volume of unit mass of the gas before and after passing the 
plug, q the heat which it absorbs.from the calorimeter. To form 
an estimate of the external work done in forcing the gas through 
the plug, it may be assumed that moveable pistons are placed in the 
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tube before and behind the plug, by which the pressures on both 
sides are kept constant and the total mass of gas also kept constant. 
When a unit mass of gas flows through the plug work pxvt is done 
in pushing in the back piston, and work p2v2 is done by the issuing 
gas in pushing the back piston out, hence energy ptvt — p2v2 is 
supplied from without in this way. Moreover, energy q is supplied 
from the calorimeter. Hence the total quantity of energy supplied 
from without is pxvx — p%v2 + q. At the end of the process the only 
visible result is that there is a unit mass less of gas at the back 
and a unit mass more gas at the front of the plug. Moreover the 
flow being steady, the energy of every unit mass at the back of the 
plug always remains the same, and the energy of every unit mass 
in front of the plug always remains the same. The principle of 
conservation of energy now leads to the inevitable conclusion1) that 
the intrinsic energies of the unit mass in front and the unit mass 
behind the plug must differ by an amount given by 

(183) ik — ui = Pi -P2V2+ q- h" 

Again, the intrinsic energy of a gas depends only on its actual 
state, and the initial and final temperatures are equal. Hence the 
change of energy u2 — must be the same as in an isothermal 
reversible transformation between the same two states. By the formula 

we get therefore 

(184) u2 — ut 

du = yvdT + — p)dv 

= ypdT + Ipdp —* pdv 

Substituting in (183) we obtain the two forms 

(185) 2 —J(1”- ' p)dv, 

p* pi 

(186) q_ — J 'Jp + v) dp • — — J 'Jp + v)dp. 

Pi Pi 

For a perfect gas p2= p±vl? lv = p, lp= — v, whence 

(187) g = 0, 

1) This conclusion could easily be verified by assuming any simple law of 
frictional resistance in passing through the tube, remembering to add in a 
quantity of heat equal to the work lost in overcoming friction. 

BRYAN, Thermodynamics. 9 
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hence for ordinary gases g *s small- Taking (186) we have on 
differentiation (remembering pt > p2) 

(188) ||- 

where ~ measures the “cooling effect” expressed as the ratio of 

the absorbed heat to the fall of pressure when the latter is small. 
Calling this quantity % we have by (124) 

(189) 

or 

(190) 

Ci log t), ° + z 

p const. 

If for any given pressure p, the coefficient % has been determined 
as a function of v, the above equation when integrated between 
suitable limits will give the ratio of the absolute temperatures corre¬ 
sponding to any two volumes of the gas contained in a constant 
pressure gas thermometer. As % is small compared with v, various 
approximate methods can be adopted according to the particular case 
considered. Thus if between certain limits % may be taken to be 
cons tank the integral of the equation between these limits is of the form 

(191) Tocv + %. 

But if t is the temperature in a constant pressure gas thermometer 

t oc v 

and if we suppose t = gv, equation (191) shows that the absolute 

zero is below the zero of gas temperature by an amount or — • 

In like manner taking equation (185) we have 

(192) 
or 

(193) 
dq 
dv 

dq 
dv 

d(pv) 
dv 

— p 

d(pv) 
dv 

dp 
d log T i -p. 

This equation might be used to find the corrections to the readings 
of a constant volume gas thermometer, but it will be seen that the 

correction depends on two terms, one representing the “cooling 

effect”, and the other representing the deviations from Boyle’s 

Law, and both these terms may be equally important. 
If the gas neither gains nor loses heat we have 

(194) u2 — u^p^- p2v2 

whence the transformation satisfies the condition u + pv = constant 
or %s = constant. 
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But 
du = fpdT + lp dp — pdv 

hence substituting we Save 

(195) J{ypdT+ (lp + v)dp] - 0 

or for a small change of state 

(196) fpdT = — (Ip + v)dp. 

To avoid introducing absolute temperature the left hand side 

may be put equal to cpdt, where dt is the observed change of 

temperature on the scale of the thermometer used in the experiment; 

and Cp the* specific heat at constant pressure referred to the same 

scale. Moreover if cpdt is now put equal to dq, dq will represent the 

heat which would have to be taken from a calorimeter to bring the 

gas back to its original temperature; and hence if be put equal 

to %, this is the same measure of the cooling effect as in the previous 

case. In other words; cooling effect takes the form of a fall of 

temperature in the gas itself instead of an absorption of heat from 

the calorimeter; and the method is practically the same. A difference 

would of course exist between the two cases if the change of temperature 

were considerable. 

131. Comparison with the case of a gas rushing into a vacuum. 
It is to be observed that while the porous plug experiment gives 

the correction for the constant pressure gas thermometer; Joule's original 

experiment of a gas rushing into vacuum gives the correction for the 

constant volume thermometer. In that experiment the energy remains 

constant hence 

(197) 

Writing 

(198) 

y„dT + (lv—p)dv = 0. 

, = _ VydT ^ ^ cvdt 

% dv dv 

y- affords a measure of the cooling effect and the equation becomes 

(199> {raFx},-* + *' 
With this method the correction for the constant pressure thermo¬ 

meter would contain terms depending on the deviations from Boyle’s 

Law, which could not be neglected. 

132. Inversion of the porous plug effect. It will be noticed that 
the cooling effect % vanishes if 

• 9 
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If we assume as our known data, the (p, v, T) equation of a gas, 

and take any two of these variables as coordinates of a point in a 

plane, the present equation determines a curve in that plane which 

may be called the curve of inversion. This curve separates those 

states in which the cooling effect is positive from those in which it 

is negative. If we take v and T as our independent variables, the 

curve of inversion is obviously the locus of the points of contact of 

tangents drawn from the origin to the family of curves p = constant. 

Secondly if the curve of inversion be determined experimentally 

the data may be utilised in determining the (jp, v, T) equation of 

the gas. 

Thirdly if the (p, v, t) equation of the gas referred to any arbitrary 

scale of temperature and its curve of inversion are known, we have 

sufficient data for comparing the assumed scale of temperature with 

the absolute scale. This method would really constitute a “null 

method” of determining absolute temperature since it depends on the 

vanishing of the cooling effect and not on determinations of its amount. 

133. Determination of Entropy, Energy and Thermodynamical 
Potentials. The scale of absolute temperature having now been fixed, 

it follows that temperatures may be measured on any thermometer 

and reduced to absolute measure. It now remains to show how the 

entropy, energy, and thermodynamic potentials of a substance (which 

we take to be a simple system such as a gas or liquid) can be 

expressed in terms of quantities which can be experimentally determined. 

Substituting from (123, 124) the values of lp and lv in .the diffe¬ 

rentials of the entropy and energy we obtain on integration from state 

(Pof vo, To) to state (plf v1; Tx): 
With v and T as variables 

®0> Tq 

—— Uq 

=f [r,dT+(T^-p)dv}. 
«u, 2o 

With p, T as variables 

Po, To 

K+iW - Oo+i>oO 

Pay Tq 

Now the changes of entropy and energy depend only on the 

initial and final states, hence we may perform the integration along 

any path representing a continuous series of transformations from 

the initial to the final states. Thus 

(1) Taking v and T as variables we may integrate keeping 

v = v0 from T = T0 to T == Tt and then integrate keeping T = Tt 
from v = v0 to v = v±. We thus obtain 
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(2) Similarly with p and T as variables keeping first p and then 

T constant; we have 

(203) • s-s0^(f7*dr) +(/(||)^ 

\^0 Sp=Po 

K+iW-K+i^o) 

and an expression for \Px — fPo closely analogous to (202). 

Now we may choose the state pQvQT0 to be a standard state of 

the system with which other states are compared. The corresponding 

values of s0u0 will be undetermined and will represent the unknown 

constants of integration which necessarily occur in the expressions 

for the entropy and energy of a system; and the above equations 

will then give the entropy and energy in any other state represented 

by the suffix 1. 

On examination of the integrals we see that 

In order that the entropy7 energy, and thermodynamic potentials of 
a simple system may he determined for every possible state of that 
system, it is sufficient to know 

(1) The p, v, T equation of the system, 
and either 

(2 a) The relation connecting the specific heat yv with the absolute 
temperature T when the specific volume remains constant and equal to vQl 
or 

(2 b) The relation connecting the specific heat yp with the absolute 
temperature T when the pressure remains constant and equal to p)0. 

We notice, moreover, that the entropy, energy, and thermodynamic 
potentials of a simple system can each be expressed as the sum of two 
terms, one a function of v and T, or p and T determined completely 
by the form of the (p, v, T) equation, and the other a function of T alone, 
depending on the expression for the specific heat. 
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134. Geometrical Interpretations. Taking for example v and T 
as variables and representing them as the coordinates of a point in 

a plane, the first of these conditions may be stated as follows: 

In order that the thermodynamic properties of a simple system 

may be completely defined within any assigned limits of volume and 

temperature, it is necessary and sufficient that 

(1) The pressure should be known at all points of the (v, T) 

plane within the assigned limits. 

(2) The specific heat yD should be known at all points lying 

along a straight line v = constant (= v0, say) lying within the assigned 

limits. 
The values of y0 along any other line v = vx are completely 

determined by the assumed data. They are most easily deduced from 

the equation 

(;/--) - T&) 
\dv/T \d Ty t> 

which gives on integration along a line of constant temperature T=* Tx 

/&\dv 
Pn 

and conversely, if we know yn at all points of the region considered 

we should know and thus obtain a check on the correctness of 

our assumed expression for p in terms of v and T. 
Exactly analogous results hold good if p and T are chosen as 

independent variables and as coordinates. The latter choice possesses 

an obvious advantage in the convenience of determining specific heats 

at a constant standard atmospheric pressure. 

135. Advantages of a choice of method. It will thus be seen 

that the data which are necessary and sufficient to determine the thermo¬ 

dynamic properties of a substance fall considerably short of those 

which are capable of being determined experimentally with greater 

or less accuracy. A complete discussion of the advantages and 

disadvantages of different methods belongs to the study of experimental 

heat and would be out of place here. It will be sufficient to point 

out that the possibilities thus opened up have two important advantages 

(1) by enabling those methods to be adopted which are best 

adapted for accurate experimental observations, 

(2) by enabling the same results to be obtained by different 

methods, thus affording a check on the accuracy of the various 

observations. 
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As an instance, of liow to put the above results into practical form, 

we should notice in the expressions for the energy-differences that 

J yvdT and JyvdT represent the total quantities of heat required 

to raise the temperature from T0 to Tt at volume v0 and pressure p0. 
Moreover the entropy difference sx — s0 could be obtained by starting 

with the substance in the state {pt) v17 Tf) allowing it to expand 

reversibly and adiabatically till its temperature was T0 and then 

cooling at constant temperature T0 till its volume and pressure were 

v0 and p0. The quantity of heat given out in the last transformation 

when divided by T0 would give the required entropy difference. 

136. Illustrative Example. Consider a gas which obeys van der 

Waals’ Equation 

(p + fy(v-b) = BT 

where a, b, JB are constants. We obtain 

dp _ B d*p _ n T dp a 

dT v-b’ 8T2 ’ ST * v*' 

It follows that 

ye = function of T only and 

(206) s yv + B log (» — &) + constant C1) 

(207) u= JyvdT —^ + constant C2, 

(208) f,-fy.dT-Tf-^dT- ~JBT log (v -b) + (X - GXT 

but owing to the fact that the (p, v, T) equation is a cubic in v, the 

expression for \v in terms of p and T could not be given in a 

simple form. 
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CHAPTEK IIY. 

CHANGES OF STATE OF AGGREGATION. 

137. Phenomena deducible from the van der Waals’ Equation. 
We shall now show how, by assigning suitable forms to the (p, v, T) 
equation of a working substance, the phenomena of liquefaction of 

gases and of the critical point can be represented analytically. 

We start by supposing the substance to obey van der Waals’ 

empirical equation 
(p + vt)(v-Q = BT 

a relation satisfied to a considerable degree of approximation by most 

gases. We suppose the family of isothermal curves T = constant 

represented taking p and v as rectangular coordinates. 

Writing this as a cubic equation in v 

(209) + 

we see that the horizontal 

line p = constant will cut 

the isothermal T = constant 

in 3 or 1 real points accor¬ 

ding as the cubic has 3 or 

1 real roots. In the former 

case, there would theoreti¬ 

cally be three possible states 

at the given pressure and 

temperature corresponding to 

the points A, B, C (Fig. 17). 

But at B where the curve 

is ascending we have 

positive, hence (§ 92) the 

state B would be unstable, 

the effect of any slight devi¬ 

ation from uniform density 

being to cause the substance 

to flow from the points of 

lesser to those of greater, den- 
0 ~v • ° 

Eig 17 sity, and thus to separate into 

two stable phases represented 
by points on the descending parts of the curve. 

It follows that if the isothermal line cuts any horizontal line in 

3 real points, the substance, instead of following the curve in an 
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isothermal transformation, must undergo a discontinuous change of 

state, from the branch AD to the branch EG, while if the curve 

continually descends towards the axis p = 0 as v increases no such 

discontinuous change is pos¬ 

sible. In the former case the 

sudden change reproduces the 

phenomena of liquefaction, in 

the latter case we have a 

perfectly continuous trans¬ 

formation similar to that ob- 

served when a gas is com¬ 

pressed at a temperature 

above its critical temperature A \0 
(Chap. I § 20). • / 

The discontinuous trams- 1 

formation just vanishes when \ / 

the isothermal line has a 

point of inflexion with a hori- \ ! 
zontal tangent. This point \ j 
of inflexion is the critical pj 
point, and its coordinates ^-:-^ 

determine the critical pres- „ 
x Fig. 18 (after Clausius). 

sure, volume, and temperature 

which we denote by pcvcTc. 

At this point the cubic (209) has three equal roots each equal 

to vc, hence ^ „ 
o 7 , Jslc o 9 a o ah 

= &•+—> Vt~Te 
giving 

(210) «c = 3 b, 
conversely 

(211) a -Sp'Vo1, J5 = |^-c JL, a = 3pcvc2, B y 
8 Pcvc 

3 

whence a, b, R can be determined if the critical pressure, volume, 

and temperature are known. 

138. Properties peculiar to van der Waals’ Equation. It will 

be observed in the first place that if different gases obey van der 

Waals’ formula, their critical points must all satisfy the common 

relation 0 n n 

Let 7C, v, ft be the ratios of the pressure, volume, and temperature 

of the gas in any state to their critical values; these, which are called 
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tlie “reduced” pressure, volume, and temperature, will be the measures 
of these quantities taking their critical values for the particular gas 
considered to he the units. Then van der Waals’ equation assumes 
the form 

(212) (« + J.)(»-t)~J* 
or 

(213) - (ic + 8ff>2 + 9v - 3 = 0. 

This equation is independent of the gas considered and it follows 
that according to van der Waals’ Law the isothermal curves of 
different gases are the same family of curves and differ only in the 
horizontal and vertical scales representing the pressure and volume. 

189. Critical phenomena for other (p, v, T) equations. The 
general arguments of the last article but one as to the existence of 
discontinuous changes of state and critical points are not peculiar to 
van der Waals’ Equation but lead to the following general conclusions: 

(1) If for certain values of p} T, say p1} T1} the (p, v, T) 
equation of a substance when solved for v has three real roots, then 
when the substance is compressed or allowed to expand at temperature 
Tt a discontinuous change of state must occur somewhere. 

(2) If for some other value of T1? say T2, two of the roots 
remain imaginary for all values of p} the initial and final states 
corresponding to the discontinuous change can be connected by a 
continuous series of transformations by suitable changes of temperature. 

(3) In this case a critical point will exist and will be determined 
by making three roots of the (pvT) transformation all equal. 

(4) If the critical volume, pressure and temperature are known, 
we have three equations to determine the constants in the p, v, T 
equation of the gas. 

For convenient reference we subjoin the following list of empirical 
equations that have been proposed by different physicists as representing 
approximately the (pvT) equations of imperfect gases. But of these 
it will be seen that the first three fail to account for liquefaction 
or critical phenomena; they have now been superseded, and are chiefly 
of historic interest 

(214) pv = JBT — (BanJcme1) 

(215) ~ = B — ' (Joule & Thomson*) 

(216) pv = JBT {l —^ (Begnault) 

1) Phil. Trans. 1854 2) Phil. Trans. 1862. 
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where BT is a function of T, found to vary directly as the absolute 
temperature, and inversely as the pressure of saturated vapour at that 

temperature. 

(217) [p + }(»-«)“ -BT (Clausiusx), 

(218) pv = B {1 + T + ~-y - (Tait1 2) 

(219) 
— a. -)- n Y(v — B)*-j- d° 

BT 
v 

(.Amagats'). 

Finally Dr. Kamerlingh Onnes4) has abandoned the attempt to 
express the y>, u, *9' equation of a gas in a finite form, and has 
adopted infinite series involving negative powers of v. 

If Clausius’ Equation be assumed, the critical point is given by 

(220) rI! = 3« + 2D, 

giving conversely 

(221) a = vc — 
BTC 

T2 = 

D = 

8c 

27 (cc + B)B’ 

3 BTe 

Pc 

C 

cB 
216 (a+ 5)2 

27 B*T/ 

64 P~0 

With the virial equation of Tait the critical point is given by 

A —Be T0 c A A —Be Tc_q_ 

(222) J>o =+ (^ + y)a’ («(: + “)3 («« + r)*' 

whence 

(223) 

and it is also found that 

A _ Be T = 0 - P‘(V° + 7y A. JjBIc cc — y a — y 

(224) 3 vc+ cc + y ■■ 
B 

while by substitution the (p, v, T) equation becomes 

(225) P=Pc{l-^^^} + A1 + A^-^ 

involving seven constants p0} vG, TG} a} y, e, B9 connected by the 

single relation (225). 

1) Wied. Ann. 1880. Phil. Mag. 1880. 
2) Foundations of the Kinetic Theory of Gases, Trans. R.S.E. 

S) Jowmal de Physique, July 1899. 
4=) Leiden, Communications, 71. 
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140. Conditions of phase equilibrium. When two different phases 
of the same substance are in equilibrium with each other their 
pressures and temperatures are obviously equal, and we shall now 
show that the thermodynamic potentials \p of a unit mass in the 

two phases are also equal. 
Let v'? s', u', y be the volume, entropy, energy, and potential at 

given pressure per unit mass in one phase, say the higher phase (Chap. I, 
§ 15), v", $", u", fp the corresponding quantities for the other phase. 
Then if a mass m passes from the first to the second phase by a 
reversible transformation at temperature T and pressure p the quantity 
of heat absorbed is mT(s" — s'), the work done by expansion is 
mp(vrt — vr) and the increase of energy is m (it"— u'). Hence by 
conservation of energy 

(226) u" — u' = T(s" — s') — p(v" — v') 

i. e. 
(227) u" — Ts" + pv" = u' — Ts' + pv' 

or 

(228) y'=y. 
The same conclusion can be put into a more general form by 

considering the expression for the available energy of the complex 
when subjected to the condition of constant pressure and temperature. 
If m' and m" are. the masses of the substance in the two phases this 
available energy is by § 90 given by 

(229) A = m'y + 

If y > y' A may be decreased by the transformation of part 
of the complex from the higher to the lower phase, and therefore 
this transformation will tend to take place and will be irreversible. 
Similarly if a transformation from the lower to the higher 
phase will tend to take place and will be irreversible. 

The former case represents an instance of what is called a 
supersaturated complex, the latter of an unsaturated complex. For 
equilibrium we must have y = yf and the complex is then saturated 
(§ 15). 

At the same time in an ordinary supersaturated or unsaturated 
complex, such as occurs with water and steam, when condensation 
or evaporation is taking place, the temperature is not necessarily 
uniform, nor is the pressure quite uniform when the parts are in 
rapid motion as when water is being boiled briskly. In no case 
does equilibrium exist except when p, T, are the same throughout 
the complex. 

The thermodynamic potential involves two integration constants, 
one multiplied by T. But if the two phases can be connected by a 
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continuous series of transformations by passing above the critical 
temperature, these constants will be eliminated when we take the 
difference \p — at the same temperature and will not affect the 
form of the equilibrium equation = \J. 

This equation will therefore be a determinate equation in p and 
T, and if p and T be the coordinates of a point in a plane, the 
locus of the equation will be a curve in the (p, T) plane which is 
called the curve of saturation. By means of the (p, v} T) equation of 
the substance the corresponding curve of saturation can be transferred 
to the coordinates v, T or p, v. 

141. Application to van der Waals’ Equation. If the substance 
obeys van der Waals’ Equation we have by § 116 

(230) 
f„-f v+pv= J*yvdT — T 

- v - ^ log (*-&) + - C2T + pv. 

Here yv is a function of T alone. It is not impossible to 
conceive a substance where yv is a different function of T in the 
liquid and gaseous phases provided that is the same function of T 
for all values of v above the critical temperature. The following 
arguments would fail in such a case, we assume that yv is the same 
function of T in both. The equation fJ = fp" then gives 

(231) p(v> - v") = %-± + BTlog 

This equation involves the two volumes vr, v,r which are the 
greatest and least roots of the cubic (209), hence the elimination leads 
to a very cumbersome equation in (p, v) for the border curve. But 
writing the (p, v, T) equation in the form 

/qqqN B T Oj (232) 

and assuming it to hold good for all values of p, v, T whether corre¬ 
sponding to possible states of the substance or not, the area of the 
curve T == constant from v = v! to v = v” in the plane of (p, v) is 
equal to the right hand side, whereas the left hand side represents 
the corresponding area cut off by the line p = constant between the 
same ordinates. We have thus the following rule: Draw the isothermal 
curve for T, in the (p, v) plane and draw a horizontal line crossing it 
m such a position that the areas of the segments thus intercepted on the 
isothermal above and below this line are equal (Fig. 18). 
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Then the points of intersection of this horizontal line ivith the 
isothermal will give the volumes and pressure at which change of phase 
occurs at temperature T 

The transformation will thus be represented by the horizontal 
line ABC instead of the curved line ABB EC but the area swept 
out by the ordinate will be the same for both. 

142. Extension of the Rule of Equal Areas. The same rule has 
been employed to fix the position of the horizontal lines in the (jp, v) 
diagram of the isothermals in other cases than that afforded by van 
der Waals’ Equation. Its generalisation is open to the objection that 
since the ascending parts of the isothermals represent unstable and 
therefore physically impossible states of the substance, no experimental 
data are available for tracing them, and it is clear that if these parts 
are merely filled in by drawing, the areas which they intercept on a 
horizontal line are perfectly arbitrary. We may get over the difficulty 
by stating the rule in the following form. 

Let p and y0 be two functions of v and T connected by the 
differential equation 

(233) 
Td^p 

dv dT2 

which are equal to the pressure and specific heat at constant volume 
of the substance over regions representing physically possible states, 
and which remain finite, single valued and continuous over the 
intermediate (or “unstable”) region. Let the values of p for constant 
T be plotted in the (p, v) plane thus joining up the corresponding 
isothermals. 

Then the horizontal line which intercepts segments of equal area 
on one of these curves will determine the points at which change of 
phase takes place. 

Proof. From the above differential equation 

r,dT+(Tp^-p)dv and t*dT+^dv 

are perfect differentials throughout the whole region, therefore their 
integrals are the same taken along every curve joining the same two 
points in the (v, T) plane. 

If the initial and final points represent physically possible states 
of the substance, the integrals must therefore represent the corre¬ 
sponding differences of energy and entropy respectively, whether the 
intermediate path passes through physically possible states only or 
not. We may therefore integrate across the unstable region along 
the path T = constant and get 
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(234) «' -u"=(^J(r||- -pj dv'j , s’-s" = (^J‘|| , 

where A is the area of the isothermal between v!t and ■?/. 
The condition of phase equilibrium is 

(236) 0 = f/ — f/' - (V + pvf) - (f." + jpt/0 

or 

(237) 0 — — jpC^ — v") 

which is the rule of equal areas. 
Example. Thus if Clausius’ equation (217) be assumed equation 

(233) gives on integration 

yv = Y^V+~S) ^ 

and if f(T) is the same function of T in the liquid and gaseous 
states Clausius’ equation may be assumed to hold across the gap 
separating the two states, and the rule becomes applicable and gives 

(/d»j p = v, _v„ log -gr— — Y{¥+~B)(^' + B) 

where vf and v,r are the greatest and least roots of Clausius’ equation 
when written as a cubic in v. 

143. Metastable and essentially stable states. It is to be observed 
that the descending portions of the isothermal curves beyond the 
horizontal line may represent states of the substance which are 
physically possible if it exists only in one phase. Thus if > y' 
the substance may exist in equilibrium in the higher phase if the 
lower phase is completely absent, but the presence of any quantity, 
however small, of the lower phase will destroy the equilibrium, and 
any disturbance may cause the substance to pass more or less suddenly 
into the lower phase. Such cases have been realised experimentally. 
This result does not of course apply to the ascending parts of the 
isothermal. 

We may speak of the states in which \p is least as being essentially 
stable, to distinguish them from states which are only stable for 
continuous variations and whose equilibrium may be broken by a 
discontinuous change of phase. The latter are called metastable. 
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144. The Triple Point. The conditions of phase equilibrium 
when applied to a substance capable of existing in three different 
phases (as exemplified by the solid, liquid and gaseous states of 
matter), determine the phenomenon of the triple point (Chap. I § 18). 

For if y, f/, y/f represent the potentials of the three phases 
expressed as functions of p and T, the condition of simultaneous 
equilibrium of the phases gives 

(239) y=f/ = f/'- 

We have thus two simultaneous equations which when solved give 
one or more values of p and T. This value or values are therefore 
finite in number. 

A triple line could not in general exist, even if, owing to the 
peculiar forms of the potentials the two equations derived from (239) 
were not independent. For at points on either side of this line in 
the p, T plane, equilibrium would only be essentially stable in the 
phase for which y was least (§ 140) and there could be only one 
phase on either side of the line satisfying this condition. An exception 
might occur if the potentials of two phases were equal over a finite 
area on one side of the line but the phases would then be thermo¬ 
dynamically identical. 

If y, y', y" are the potentials of water in the gaseous, liquid 
and solid states, the p, T curves 

(240) = = and f/"=y 

are the so-called steam line, ice line, and hoar-frost line. 
The three curves 

all pass through the 
triple point, but if they 
be produced through 
that point the produced 
parts do not in general 
represent essentially 
stable states of phase- 
equilibrium. 

For if the line 
V “ be produced 
through the triple point 
y — f/' vanishes and 

0 t in general changes sign 
19, in passing that point. 

On the side on which 
y an-d |p < y,r equilibrium will be essentially stable between the 
first and second phases, but on the other side y and yf will be 
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> yt! and the substance will tend to pass into the third phase as 
the essentially stable condition. 

Thus the three curves determine three regions about the triple 
point, and in the interior of each region only one phase can exist, 
namely, that with the lowest potential. 

145. The Phase Rule for a single substance. When a substance 
can occur in four different phases a quadruple point does not in general 
exist. For equilibrium between four phases would require that the 
equations ,m 

should be satisfied by the same values of p and T, and as we have 
three equations and only two variables this is in general impossible. 
If the forms of the potentials should happen to be such as to render 
the three equations consistent, a quadruple point would undoubtedly 
be formed, but it would be more correct to regard such a point as 
formed by the coincidence of two, and consequently of four triple 
points. Thus in general not more than three different phases of the 
same substance can coexist at the same pressure and temperature. 

We thus arrive at the conclusions that so long as we are dealing 
with a single substance (1) three different phases can only coexist at 
one or more points in the plane of (p, T), (2) two phases may 
coexist along one or more p 
lines in the ($, T) plane, 
(3) one phase can only 
exist at points lying within 
a certain area in the (p, T) 
plane. 

In the first case the 
system is called avariant, 
since neither the pressure 
nor the temperature can 
be varied without reducing 
the number of phases. In 
the second the system is 
called univariant, since 
either p or T may be 
varied if the other of 
these two variables is 
varied so that the point O T 

(p, T) moves along the rig. 20. 
proper line, in the third 
case the system is called bivariant, since either p or T can be 
varied independently provided that the point p, T does not pass 

Bryan, Thermodynamics. 
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out of the region in which, the phase considered exists in stable 
equilibrium. 

Sulphur is a case in point. The substance can exist in four 
phases, two solid (monoclinic and rhombic), the liquid phase, and 
the gaseous phase. If the curves of equilibrium between the different 
phases in the (p7 T) plane be drawn, as in Fig. 20, it is seen that 
the curves divide the plane of the diagram into 4 regions in which 
the systems are bivariant, bounded by six curves which correspond 
to univariant systems, the six curves intersecting in four triple points, 
at each of which the system is avariant. 

The generalisations of these conclusions for the case where 
instead of a single substance, we have a number of different substances 
constitute the Phase Rule of Gribbs which is given in the next chapter. 

146. Moutier’s Rule. The distribution of the curves in the p, T 
plane in the neighbourhood of a triple point may be found by finding 
where they or their produced directions cut an isothermal line corre¬ 
sponding to a temperature differing from the triple temperature by 
a small amount AT. If Ajp23 be the corresponding difference of 
pressure along the curve of separation y' — \p,n = 0 and ApB1, Ap12 
refer to the other curves, we have 

and two similar equations. Now ™ = v1 the volume of unit mass in 

the state y, whence on substituting and adding we obtain 

(242) (vn — vw)Apn + (vrn — vf) Apzl + (V — vft) Ap12« 0 

an equation equivalent to Moutier’s three equations of the form 

(243) (Afti - Al%) («'" — *0 — (4)Pu - Ai>23) (»" - 

If v\ v]\ v,n are in descending order of magnitude it follows that 
Apsl is between Ajp12 and Ap^. Hence Moutier’s rule, according to 
which if a horizontal line ( T = constant) he drawn cutting the three 
curves of transformation or their produced directions near the triple 
point the middle of the three points of section corresponds to the trans¬ 
formation involving the greatest change of volume. 

In like manner if a vertical line (p = constant) be drawn cutting 
the same curves or their produced directions near the triple point 
the middle of the points of section corresponds to the transformation 
involving the greatest change of entropy. 
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147. Properties of a saturated complex of two phases. We shall 
now show how the thermodynamical properties of a complex of two 
phases of the same substance considered as a whole can be expressed 
in terms of those of the substance in the separate phases. 

Let M be the total mass of the complex, X and M — X the 
masses of the portions in the two phases respectively, and let these 
phases be called by way of distinction the first and second phase. 
x JX 
If we put -^r = x, then x and 1 — x will be defined to- be the masses 

of the two phases in a unit mass of the complex, although this is 
of course a mere convention unless the whole mass of the complex 
is unity, because the complex is not homogeneous like a mixture 
of gases but the two phases are quite distinct and separate. 

In the same way if V, U, 8 are the whole volume, energy and 

entropy, we may define •—> as the volume, energy, and entropy 

of unit mass of the complex, these we. denote by v, 'it, s, while we 
use accented letters (V, uf, s!)(vn,un, st!) to denote the volume, energy, and 
entropy per unit mass in the first and second phases respectively. 
It will be convenient in understanding what follows to suppose that 
the mass of the complex is actually equal to unity, though this is 
not necessary. 

In the first place we notice that the complex like a simple system 
admits of two independent variations. 

(1) The temperature may be varied without altering the masses 
x, 1 — x of the components. In this case the corresponding variation 
of pressure is determined by the condition of saturation 

\p I p 

which we shall denote for convenience by the equation 

(244) G(p, T) = 0. 

(2) The composition of the complex may be altered by the trans¬ 
formation of a quantity dx or Ax of matter from the second to the first 
phase — or vice versa, — the temperature, and consequently the pressure 
remaining constant. The volume, energy and entropy will in general 
be altered, and heat will be absorbed or given out. If X&x is the 
quantity of heat absorbed in the transformation of A#, whether this 
quantity be small or finite, X will be the latent heat of transformation 
from the second to the first phase (Chap. I § 15). 

The state of the complex is thus defined by the two independent 
variables T and x, and the difference from an ordinary simple system 
is that the equation G(p, T) = 0 takes the place of a relation 
between the three quantities p, v, T. 

10* 
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Since the whole volume, energy, and entropy of the complex are 
respectively equal to the sums of the corresponding whole volumes, 
energies, and entropies of the components we have 

(245) v = xv! + (1 — x)v!l, 

(246) u = xv! 4- (1 — x) v!1, 

(247) s = xsf + (1 — %)s". 

Consider now the effect of the transformation Ax at constant 
temperature T. We have from (245) and (247) 

(248) Av = (v1 — vt!)Ax, As = (sf — sn) Ax 

and from above 

(249) A q = l Ax 

where Aq is the absorbed heat. But 

where l0 is the latent heat of expansion of the complex. 
Hence as in Chap. I § 16 

(251) t’-wh? 
and further 

(252) s' — s" = Tjjp 

Clapeyron’s Equation 
/ dp \ __ l0 

\dTjv T’ 

when taken in conjunction with (251) gives 

dp X 
d T ~ (v' -v") T 

where the condition v = constant is no longer required in the expression 

for because since the complex is saturated p is a function of T 

alone, and the differential coefficient in question is the same as would 
be obtained from T) = 0. 

In the above work we have used the symbol A to denote variations 
which may be finite. In the more general case where the temperature 
also varies we are restricted however to infinitesimal changes. We 
now put for the added heat dq 

(254) dq = Idx 4- xy1 dT 4- (1x)yudT 

where yf, y!l are the specific heats of the two components in a state 
of saturation. 
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Thus 

Yp> Yp" at 
formulae 

we should have y', y" connected with the specific heats 
constant pressure and latent heat coefficients lp', lp" by the 

„,rr_a i 7 n y — Yp -r >>p 

Since 

(255) 

whence 

(256) 

— is a perfect differential we have 

JL \ _ JL + 
dT\f) — dx[ T 

_ L = J — y" 
8T T r r 

a formula due to Clausius. 

148. Applications. From (253) we see that increase of pressure 
will raise or lower the temperature of transformation according as 
latent heat is absorbed in passing from the state of lesser to that of 
greater specific volume or the reverse. The former is the case with 
water and steam, the latter with ice and water. 

Let us next consider the effects of a sudden adiabatic compression. 
Putting dq = 0 in (254) we have 

(257) %y' -f (1 — x)y,r 
. - Tdp 

and the sign of the coefficient of dp on the right hand side determines 
whether the effect of an increase of pressure will transform part of 
the complex from the second to the first phase or conversely. 

If y1 and y!f are both positive it is clear that dx and dp will 
be of opposite signs if v1 > vtf and conversely. This means that 
increase of pressure transforms part of the complex from the phase 
of greater to that of less volume. For example, in a saturated complex 
of ice and water compression causes liquefaction. 

If / is negative (as is the case for steam) and yn positive the 
same conclusion holds good if xyr + (1 —x)y,r is positive, but the 
effect is reversed if this expression is negative. It appears that the 
effect will depend on the proportion of the two components, a slight 
adiabatic compression causing transformation to the phase of greater 
or less volume or no change according as 

x < or x > or x = 
7—7 

The effect of a small change of temperature at constant volume 
may be discussed by means of the equation v = xvr + (1 — x)vu, which 
gives on differentiation with v constant 
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(258) dx(v' - v") = dT(x+ (1 - x) 

a relation leading to conclusions closely similar in their general 
character to those just found. 

Finally the relation between latent heat and temperature is given by 

(259) + 

If / > yn (as is the case with water and ice) the latent heat 
necessarily increases with the temperature. As another example if 

is negative and > yn, then y! must be negative. This result is 

verified in the case of steam. 

149. Properties at the Triple Point If we have three phases 
of a substance in equilibrium at the triple point, p and T will both 
be constant. If the total mass is unity, the masses of the phases 
being xy y, 1 — x — y, we have equations of the form 

v = xvf 4" yvtf + (l x — y)v,n? 

u = xv! + yu11 + (1 — x — y)uw7 

s = xsf -f ysft + (1 — x — y)sw. 

The temperature being constant the specific heats do not enter 
into the question, but we get 

(260) dq = X31dx + X%2dy 

where XB1? 232 are the latent heats absorbed in passing from the third 
to the first and second states respectively. With this notation we 
should evidently write XB1 = — Xu and 

(261) Xn + XB1 + X12 = 0. 

The complex involves two independent variables x and y. These 
are determined if v and s are known. Hence the composition of the 
complex can be varied by altering the volume or by adding or with¬ 
drawing heat so as to alter the entropy, and these variations may 
be made independent of one another. The variations dx, dy produced 
by these changes are in fact given by the equations 

(262) (v1 — vw)dx + (vn — vw)dy = dv 

and 

(263) X31dx + XS2dy = dq = Tds 

or 
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(264) (s' — sm)dx + (s!t — sn,)dy = ds 

of which the last two are equivalent in virtue of the equations 

(265) = ^ = 

The latent heat of expansion depends on the ratio of dx to 

dy and is indefinite. This is in agreement with Clapeyron’s equation 

in which takes the form 

CHAPTEE XV. 

PHASE EQUILIBRIUM WITH MORE THAN ONE SUBSTANCE. 

150. Partial potentials of the constituents of a mixture. In this 
chapter we shall show how the methods of Thermodynamics can be 
applied to a mixture or compound of various substances when account 
is taken of variations in the composition of the mixture. This is the 
investigation first published by Gibbs under the title “Equilibrium 
of Heterogeneous Systems”. 

Suppose that a homogeneous mixture which we shall call our 
system is formed of masses Ma, Mb, MC}.. . Mk of It different substances 
which we may call A, B, C, . . . K and that this mixture is at uniform 
pressure p and temperature T\ the whole volume being V. Then so 
long as the mixture remains homogeneous (as is here assumed) the 
only independent variations of which it is capable of undergoing are 

(a) variations in the masses Ma, Mi,, . . . Mk of the constituents, 
(b) variations of the whole volume V) 
(c) variations produced by adding or withdrawing a quantity of 

heat dQj i. e. variations of entropy. 
It follows that the state of the system when homogeneous can 

be completely specified by the masses Ma, Mb,. . . Mh, the whole 
volume V and the whole entropy S. 

By the extended principle of Conservation of Energy (Chapter Y) 
we regard it as an axiom that an entity exists called the whole 
energy of the system and that this energy U is a function of the 
variables above mentioned, i. e., that an equation exists for the system, 
of the form 

(266) TJ=f{8, V, Mk) 

by which its whole energy U is defined. 
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The variation of U is thus given by 

(267) + + 

When the masses May Mb,. . . Mk are kept constant the system behaves 
as a simple system for which 

(268) dU-TdS-pdV, ^ = -p. 

If we write 
dU __ 

8 Mk ^ 

the differential of the energy assumes the form 

(269) au=~ TdS-pdV + ^^dM,. 

The coefficient yk is called the partial potential of the substance 
K in the mixture, or, according to Gribbs, simply its potential. From 
this we obtain the following definition in words. 

Let the mass of the substance K in the mixture be increased by 
the differential quantity dMk without altering the total volume or entropy 
of the mixture, and let the corresponding increase of total energy be 
pkdMk. Then pk is said to be the partial potential of the- substance K 
in the mixture in question. 

To increase the mass of one of the constituents without altering 
the whole entropy of the system we may conceive the mass dMk 
added at temperature T equal to that of the system and a quantity 
of heat withdrawn equal to T times the gain of entropy caused by 
the addition in question. 

151. Expression for the whole thermodynamical potential $P in 
terms of the partial potentials of the constituents. In the next place 
we notice that the assumption that the system is a homogeneous 
mixture imposes a certain limitation on the form of the function f 
by which the energy is expressed. 

For the condition of being homogeneous involves the property 
that if different quantities of the same mixture be taken, the whole 
volume, entropy, and energy and the masses of the constituents are 
proportional to the quantities, that is, more exactly, to the whole 
masses of the mixture in question. 

Hence, if the masses Ma, Mb, . .. Mk, the whole volume V and 
the whole entropy S are each increased by a small fraction ds of 
their original values, the whole energy will be increased by the same 
fraction of its original value. Equation (267) must therefore be 
satisfied by 
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du—uas, dV— Vds, dS = Sde, dMa = Mads,. .dMk = Mkds 

whence we have by substitution 

(270) U=TS-pV + ^Mm 

and therefore 

(271) &>= U- TS+pV-^M^. 

In other words the potential %P of the mixture is equal to the 
sum of the masses of the constituents multiplied by their corresponding 

partial potentials. 
In the special case of a single substance, the partial potential g, 

becomes, therefore, identical with the thermodynamic potential of 
unit mass at given temperature and pressure. 

The above result also follows from the fact that Uis a homogeneous 
function of the first degree in S, V, . • . Mk (not in general a 
linear function) whence by Euler’s Theorem of homogeneous functions 

(272) v-s|§ + r§? 

In general the potentials ^ depend on the percentage composition 
but are independent of the total quantity of mixture taken, so that 
if ma, mb, . . . mk are the masses of the constituents, v, s the volume 
and entropy, g,b, . . . ^ are expressible as functions of v, s, maj. . . mkj 
or if preferred they can be expressed as functions of the pressure p, 
temperature T, and percentage composition as defined by the quantities 

ma, mby.. . mk subject to ^?mk = 1. In other words g>b, . .. g>k 
are homogeneous functions of zero degree in S, F, Ma, . . . Mk. 

152. Transformation of the Fundamental Equation. The equation 

(266) U = f(S, F, Ma,...Mk) 

is called a fundamental equation, and as has been stated above, the 
existence of such an equation is an axiomatic consequence of the 
fundamental principles of thermodynamics, and for a homogeneous 
mixture f must be a homogeneous function of the first degree. We 
shall now show how to deduce other equivalent forms of fundamental 
equation suited to cases when the system is specified by different 
choices of variables. 

We observe that equation (266) and the subsidiary equations 

dJL — r — _ UL — 

dS ~~~ oV ~~ P’ dMk P* 

form a system of ft + 3 equations connecting the following 2ft + 5 
variables, namely 
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(274) 
U, S, V, Ma, Mb,... Mk, 

T, p, [la, .«6, • ■ • fU 

so that the variables are completely determined if the values of any 
li 4- 2 of them are given. As in the ordinary case of a simple system 
the above system of equations is easily seen to he equivalent to the 
following: 

(275) %v = U — TS = a known function of ( T, V, Ma,... Mk), 

^ o d*v _ 
(27b) dT— o, gy— P> ■ ■ • %Mk ^ 

or, again, to the following 

(277) %r = U-TS + pV- a known function of ( T, p, Ma,. . . Mk), 

(278) 
dT 

— S, 
3%f 
dp - + f, as* 

Pa, 
"0M* 

= Pk 

in which (275) and (277) are the fundamental equations respectively. 
If, following an analogous method, we attempt to form a 

fundamental equation with p, T, [ia, Pb, • • • Pk as independent variables 
the potential function we should logically use would be 

U- TS + pr-^iHMk 

but this for a homogeneous mixture vanishes by (270). We conclude 
that the fundamental equation in this case takes the form of a relation 
between the variables p, T, [ia, [ib) . . . [ik alone so that these variables 
are not independent. This case may be best treated as follows. 

(a) If we start with the system of equations (273), (266) we find 
that p, T, [ia, pi>, • • • Pk depend not on the whole mass of mixture 
taken, but only on its percentage composition so that if small letters 
refer to a unit mass, these 1c + 2 variables are functions only of the 
h + 2 -quantities 

v, s, ma, mb,.. . mk 

which are subject to the relation 

^ 1* 

By means of this additional relation we obtain on elimination 
an equation involving p, T, [iay . .. puk only and this relation we 
shall write in the form 

(279) P-<P{T, 

(b) Conversely, the last equation will now be shown to be 
equivalent to a fundamental equation of the form (266). For the 
elimination of d U from the equations 
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(269) dU^TdS-pdV+^pidMt, 

(270) u-ts -pv +2Var* 
gives 

(280) 0 = SdT - Vclp + 2Mkdiit, 
or 

(281) dp-^dT + ^j^-di*. 

Taking T, [ia) (ib, . . . [ik as independent variables we have 

8 ^_a _dp_ Mk dp 
V ST’ V 2pa’"' y ~Siik 

so that an equation of the form 

P = <P(T> Pa, Pb, • • ■ Pk) 

is sufficient to determine 
S_ *a 
v’ V ’ " V ' 

If the whole mass of the mixture 2* is also given, to be 

equal to M, we have for V the equation 

(283) - X 

whence V is found and the other variables S, Ma, Mb) . . . Mk are 
known. Finally the energy U is given by (270) whence 

(284) u-r{T(a)-o+2>“w} 
Equations (279), (282), (283), (284) are k + 4 in number and 

they involve 2 k + 6 variables namely the variables listed in (274) and 
the total mass M. It follows that any k + 3 of the variables may 
be eliminated and the result will be a single equation between the 
remaining k 4* 3 variables which we may take to be an equation 
between U, S, V, Ma}. . . Mk. 

If instead of the whole mass, the whole volume V is given 
equations (282) are necessary and sufficient to determine the 
pressure, whole entropy, and masses of the constituents, the total 
number of variables being now 2k + 5 omitting the whole mass M. 
With this omission equation (283) becomes omitted and the general 
conclusions are the same as before. 

We may also state our conclusions as follows: If the potentials 
of the constituents are given and also the temperature, then the 
pressure, percentage composition and generally the state of the mixture 
as apart from its total quantity are known. 
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153. Phase Equilibrium. While the preceding discussion refers 
only to a single phase of a chemical system we now proceed to find 
the condition for the equilibrium of a complex of different coexisting 
phases cp\ cp",. . . qpM each of which consists of all or of a certain 
number of the ~h substances ... K. As illustrated by the complexes 
formed of different phases of the same substance discussed in the 
previous chapter, a complex consists of several portions of matter 
which remain in equilibrium without tending to mix or combine into 
a single homogeneous mixture or compound which would be described 
as a single phase. These different parts are called the phases of the 
complex. The difference between the phases considered in this chapter 
and those in the last chapter is that h#e we may have a difference 
in the percentage composition of two phases. As an example we 
may take the case where calcium carbonate, calcium oxide and 
carbonic anhydride (or carbon dioxide) (CaCO$? CaO, G 02) are in 
equilibrium, here we have three phases formed out of the two constituents, 
CaO and C02. In the case of ice, water and steam, as considered in 
the last chapter all three phases had the identical chemical composition 

In Gibbs’ treatment it is assumed that the effects of gravity, of 
capillary tensions and of electrical and similar forces are neglected. 

If gravity be not neglected the energy per unit mass of a 
homogeneous mixture will not be the same throughout as has been 
assumed. 

If capillary and electric actions between different phases be not 
neglected these phases will have mutual potential energy and the 
whole energy of the complex will no longer be equal to the sum of 
the whole energies of the parts in the separate phases, as we shall 
assume. 

In the last chapter we found that in the case of a single substance, 
the conditions for equilibrium of two phases require that the pressure, 
temperature, and thermodynamic potential of unit mass \p shall be 
equal in both phases. For several substances we should expect that 
the third condition would be generalised by the substitution of the 
partial potentials [i of the different substances for the potential \P) 
in other words, that in addition to the temperature and pressure being 
the same in all the phases, the partial potential of any substance 
would be the same in all the phases in which that substance occurred 
in order that these phases should be in equilibrium. 

Consider variations in which the total volume of the complex 
remains constant and no heat enters or leaves it as a whole. From 
Chapter VIII § 94 the equilibrium condition of minimum available 
energy requires that for small variations of the first order in which 
the whole entropy of the complex remains constant the variation of 
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the whole energy shall vanish to the first order. Now let p1 and pft 
he the partial potentials of any substance in two phases. Then a 
variation in which a mass dM of the substance in question passes 
from the second to the first phase without altering the volume or 
entropy of either phase has been shown to be a physically conceiveable 
change (§ 150), and it is consistent with the condition of constancy 
of the whole entropy of the complex. By the definition of the partial 
potentials this change would increase the whole energy of the first 
phase by p! dM and decrease the energy of the second by pi1 dM. 
And since the two phases are assumed (as explained above) to have 
no mutual potential energy, the quantity 

(p!-p,")dM 

represents the increase of the whole energy of the complex. This 
increase vanishes, therefore 

(285) ' pi = pi'. 

We may, if preferred, give the proof in the following analytical 
form. If quantities referring to the different phases <pf, cptr are denoted 
by corresponding accents, and unaccented letters refer to the whole 
complex, we have, since mutual potential energy of the phases is 
neglected 

U = U’+ U"+...+ Z7<«> 

8U=8U'+dUft+--- + dTJW 

= T' SS' — p’8V' ^(it 8MS 

+ T"98"-p"SV" + M” 

+. 

+ TWaSW-pWSVW + ^?(iW8MW. 

Since the conditions of equilibrium hold for variations which do 
not alter the total volume of the complex or the total mass of any 
substance K and in which no heat passes to or from the complex, 
we have generally 

8U = 0, 
for all variations subject to 

8S' + 8S" + • ■ • + 9SW = 0, 
8V + 8V" +■■■ + 8VW =0, 
8 ML + a ms + • • • + a mw = o, 

a ML + 8 MS + • ■ • + 8 MW - 0. 
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This requires that 

Tn = • • * = a», y =. • • =jp(«>, 

p'a = pa = • • • = p(”\ p'k = >«*=••• = • 

By this method the conditions of equality of temperature and 
pressure as well as of the potentials are established. 

We might if we preferred deduce the conditions of equilibrium 
by supposing the complex to be surrounded by a medium of temperature 
T0 and pressure p0, and forming the available energy according to 
§ 90, in this case we should obtain the further condition that the 
temperature and pressure of each phase were equal to T0 and p0 
respectively. 

154. Case of absent constituents. If any component is entirely 
absent from any particular phase, it is necessary and sufficient that 
its partial potential where it occurs should be less than the potentials 
which it would have if it were present in infinitesimally small 
quantities in the phases from which it is absent. 

Thus let pi be the potential of a substance in the phase in which 
it is present, p^ the potential it would have if present in infinitesimal 
quantities in a second phase. Then if a mass dm of the substance 
were to pass from the first to the second phase without altering the 
whole volume or entropy of either phase the increase of energy would 
be (^(°) — pi') dm. 

This must be positive or zero, hence pf < p^. But a change in 
the opposite direction is impossible, hence the energy does not 
necessarily satisfy the usual analytical conditions for a minimum, that 
is, its variation of the first order does not necessarily vanish, and 
pr is not necessarily equal to p^. We have in fact a case in which 
only “unilateral” variation is possible as considered in § 89b. 

155. The Phase Rule. Now let us investigate the maximum 
number of different phases which can exist together in a single 
complex formed out of the k different substances A, B,.. . K. 

Since the temperature and pressure are the same throughout, 
and the partial potential of each substance is the same in all the 
phases in which that substance occurs, we have only k + 2 variables 
at our disposal, namely the common pressure and temperature and 
the values, common to each phase, of the partial potentials of the k 
substances. We may therefore denote these values by p, T, pa,... p^ 
without using accents to distinguish the different phases. 

Moreover we have shown that the existence of any phases <p 

involves a fundamental equation of condition, which may be written 
in the form 

P = <P(T> Pa, Pi, ■ ■ Pi). 



THE PHASE RULE. 159 

In general the number of equations of condition cannot exceed 
the number of variables at our disposal and we thus conclude that 

(1) There cannot in general be more than h + 2 phases in 
equilibrium formed of h substances. 

(2) If these h + 2 phases all coexist, the variables are all 
completely determined, and this case can only occur when the pressure, 
temperature and partial potentials have one or more definite discrete 
values. Such a complex is called invariant or avariant because no 
change of a physical character can take place without disturbing the 
equilibrium of one or more phases. The relative quantities of the 
different phases may however be varied, but their percentage com¬ 
positions and the volumes and entropies per unit mass of each will remain 
constant. The state in question is called a multiple point of order Jc ■+ 2. 
The triple point of the last chapter is the special case for h = 1. 

(3) If only ~k + 1 phases are coexistent, the complex possesses 
one degree of freedom and is called univariant. If the pressure or 
temperature is given, or more generally any single additional arbitrary 
condition is imposed, such as a relation between pressure, temperature, 
and potentials, the ft + 2 variables will be completely determined. 

(4) If ft phases coexist the complex has two degrees of freedom 
and is called hivariant. It can now be made to satisfy two additional 
arbitrary conditions, for example, both pressure and temperature may 
be given and may be independently varied. 

(5) If generally i phases coexist the complex is called multi¬ 
variant, its variance being of order 1c + 2 — i and denoting the 
number of its degrees of freedom. 

These conclusions constitute the Phase Buie of Gibbs. It will 
be noticed that the variations above considered have no reference to 
the quantities of the different phases present in a given complex. 
Moreover the conclusions are equally valid when the components are 
not present in all the phases. In the case of absent components the 
potentials of these components wiU not enter into the fundamental 
equations of the corresponding phases, but the number of equations 
and the number of variables will be the same as before. 

A few examples will make this latter point clearer. 
Ex. 1. Suppose A, B to be two substances which can never mix. 

If A is at the triple point, the temperature and pressure are known. 
These will not in general satisfy the condition for equilibrium between 
two phases of B, and hence B only can occur in one phase, giving 
four phases altogether, in accordance with the rule. 

If however only two phases of A occur, we have a single relation 
between the temperature and pressure and we can make them satisfy 
a second relation necessary for the coexistence of two phases of B, 
giving, as before, four phases. 
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In deciding as to the most suitable assumption to make in the 
hypothetical case of a perfect gas, the most natural plan is to 
regard the equation pv = BT as a limiting case of van der Waals7 
equation or some analogous form. But when van der Waals’ equation 
is written in the form of a cubic in v and the constants a, b in it 
are subsequently made equal to zero, two of the roots of the cubic 
vanish. We conclude that in order to bring the properties of perfect 
gases into harmony with those of ordinary gases we must take the 
limiting form of the result of the preceding investigation when the 
ratio of the volumes of the liquid and gaseous phases is made 
infinitely small. 

We thus have the result that the partial potential of a perfect 
gas at given pressure and temperature is independent of the other 
gases with which it is mixed. 

The loss of available energy and gain of entropy by the diffusion 
of two such gases then follows the laws discussed in Chapter XII. 

[If we adopted any other hypothesis, as, for example, that no 
available energy was lost by the diffusion of perfect gases, the study 
of the properties deduced from such an assumption would be devoid 
of physical interest and the “perfect gases” so defined would possess 
no resemblance whatever to actual gases in regard to these properties.] 

157. To find the fundamental equation of the mixture in the 
form of a relation between p, T and the potentials, we first transform 
the equation (Chapter XII § 122) for the potential of a single gas 
so as to give p explicitly thus 

fp—w0 yp cr0— yp 

p = e BT T B e B . 

We now notice that when the gas occurs in a mixture the partial 
potential [i takes the place of fp and the partial pressure of the gas 
is determined by the same equation. And since the total pressure 
of the mixture is equal to the sum of the partial pressures of its 
components we get for the fundamental equation of the mixture 

f v'—u'q y'p ~ y'p 
(286) p = All e ** TB' e B' 

where the accented letters denote quantities which are different for 
the different gases1), and the sign of summation refers to these 
several gases. 

1) This is reducible to the form given by Gibbs on substituting 
for yp and v0 + ft log B for <70. 

BBTAX, Thermodynamics. 11 
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C1APTE1 XVI. 

reversible thermoelectric phenomena. 

158. Definition, of a Reversible Galvanic Element The flow of 
electricity through conductors is associated with several heat phenomena, 
some of which are reversible and others irreversible. 

When a current I flows through a wire of finite resistance B 
and of uniform temperature throughout, available electrical energy of 
amount PB per unit time is absorbed, and either a quantity of heat 
equal to this is given to the surrounding media or a rise of tem¬ 
perature occurs in the wire equal to that which would be produced by 
imparting this quantity of heat to it. If the direction of the current 
be reversed the same transformation will take place. We have 
therefore a simple case of irreversible conversion of work into heat 
in the substance of the wire itself as explained in § 81, and 
entropy is generated in the wire at a rate per unit time represented 

As however the laws of irreversible thermodynamics are represented 
by inequalities instead of equations, we must in order to study 
reversible phenomena, leave this heating effect out of account, and 
for this purpose it is necessary either to assume perfect conductivity 
(j? = 0) or to suppose the flow of electricity to take place infinitely 
slowly. If e is the quantity of electricity flowing through the wire 
in time t and we consider the simple case of a uniform current, we 
have e = It, so that the quantity of energy transformed is equal to 

and keeping e constant this quantity may be decreased in- 
t 

definitely by increasing t, as well as by decreasing B. In either case 
the differences of potential in the conductors due to the currents 
vanish. In dealing therefore with a galvanic cell of finite electromotive 
force E we must therefore suppose a motor or a condenser (e. g. an 
air-condenser with parallel plates) included in the circuit giving rise 
to an equal and opposite electromotive force, and when a quantity 
of electricity de flows from the positive to the negative pole of the 
cell through the motor or in the same direction relative to the cell 
in connection with the condenser, a quantity of external work Ede 
will be done by the motor or by the attraction of the plates of the 
condenser. On reversing the process an equal quantity of available, 
energy must be supplied from without, in the form of mechanical 
work. In this statement it is assumed, consistently with the principles- 
of electrostatics or electromagnetism that the electrical energy passing 
to or from the condenser or motor is wholly of the nature of 
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available energy. This is true consistently with what is proved 
: later on if the electrodes (i. e. the points at which the current enters 

or leaves the region included in the cell) are of the same material 
and at the same temperature. This is assumed. 

( A perfectly reversible element may therefore be defined as one in 
! which no available energy is lost by the passage of electricity between 
I the poles or by any of the other transformations contemplated in 
1 reversible thermodynamics. If then a quantity e of electricity passes 

between the poles in one direction and an equal quantity then passes 
in the opposite direction, no other change taking place (the trans¬ 
formation being adiabatic) the element will return to its original 
physical and chemical state. 

159. Application of Thermodynamic Equations. When in addition 
to the last mentioned changes heat may pass to or from the element, 
other changes being excluded, the element behaves as a simple system, 
and its state at any instant can be specified by two coordinates, 
namely the whole quantity of electricity that has passed between the 
poles, denoted by e, and the entropy, or the temperature. That e 
can be regarded as a coordinate is most readily seen when the circuit 
is completed by a condenser. 

) Since Ede is the external work done corresponding to the 
variation de? we have by the laws of thermodynamics 

(287) dU = TdS — Ede. 

If then 
2k = Z7— TS, 

$e will be the thermodynamic potential corresponding to for a 
simple substance, and we shall have 

(288) = - SdT- Ede 

whence 
(d*A 

(288a) E—U)r 
a relation first obtained by Gibbs. 

Since d%e is a perfect differential 

(*> )■ 
Putting 

x—m \de/T 
we obtain 

(290) 

11 
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The interest in this equation, which is known as Helmholtz’ equation 

lies in the physical meaning of X. In fact X is the loss of internal energy 

per unit quantity of electricity generated in the circuit at constant tem¬ 

perature T. The constancy of temperature and the exclusion of other 

variations shows that this energy has its origin in the chemical 

combinations formed in the element during the change. Now the 

quantities of the different substances combined in connection with 

the passage of a unit electricity are called the electrochemical equi¬ 
valents of these substances. Moreover the quantities of energy evolved 

by them are called their heats of formation (expressed in work units) 

because in the simplest experiments on chemical combination the 

evolved energy takes the form of heat. Hence X is said to be 

equal to the algebraic sum of the heats of formation of one 

electrochemical equivalent of each of the active substances contained 

in the cell. 

160. Separation of the Thermoelectric Effects in the circuit. 
From the last section we see that E is not equal to X unless E and 

therefore X is independent of T. In other cases we have 

Here Ede is the total electric energy associated with the 

change de, Ide the energy arising from chemical reaction and we 

see that the remainder is TdS, and represents the energy supplied 

from without in the form of heat. The coefficient which is equal 

to jy represents therefore the part of* the electromotive force due 

to direct thermo-electric actions in the element. 

When no chemical changes occur, so that 2 = 0, equation (290) 

gives on integration 

(291) E - GT 

where C is a constant. Hence the thermo - electromotive force in an 

ideal element consisting of metals or other substances in contact, 

between which no chemical action takes place is proportional to the 

absolute temperature. 

In the more general case where 2 is not zero, E and 2 will be 

functions of 1 alone, so long as the battery is continuously working. 

In this case equation (290) gives on integration 

E = T{c-f^dT]j- (292) 
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161. Gibbs’ Formula. If it is possible to assume X to be inde¬ 
pendent of T this gives 

(29B) _E=r(c + =) 

X 
or putting C = — y- (C may be positive or negative) tbis gives 

(294) 

This result was given by Gibbs, who deduced it by the application 

of a cyclic transformation to the element. It does not however 

appear to be deducible from purely thermodynamic reasoning without 

some assumption. It necessarily involves the converse property that 

X (but not E unless T0 = 0) is independent of T and further that 

the total thermo-electromotive force E — X is proportional to the 

absolute temperature T, as in the case where no chemical action 

takes place. 

A very simple assumption which leads to Gibbs’ formula is that 

the thermal capacity of the cell is unaffected by any chemical changes 
which take place in it. Thus supposing we are dealing with zinc and 

sulphuric acid we assume that the heat required to raise the tem¬ 

perature 1° is the same for the zinc sulphate as for the separate 

constituents. If we start from this assumption we have, taking T 
and e as variables, 

(~) == function of T only, 

d*S 
dTde o, 

. *. is independent of T, 

E-% 
* T 

is independent of T. 

Also the assumption that the battery is in continuous action 

makes E and X independent of e. Therefore 

- = constant C 

as in (293). The converse is also true as may easily be seen. 

162. Temperature of Transformation. The constant T0 in the 

equation of the last article has an important physical meaning. For 

if the temperature T = T0, E vanishes and as T increases past the 

value T0, E changes sign. 
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At tlie temperature T0 a current can flow through tire circuit 

freely in either direction, and there being no electromotive force, no 

energy is absorbed or given out to the current. The chemical 

changes occurring in the cell will depend on the magnitude and 

direction of the current but the energy involved in them will be 

wholly transformed in the form of heating. 

When the temperature exceeds T0 the current tends to flow in 

the opposite direction, its flow being accompanied by dissociation of 

the compounds formed in the previous case. The process of com¬ 

bination can then only be continued by inserting an external electro¬ 

motive force in the direction hitherto regarded as positive and thus 

supplying external electrical energy. 

These conclusions which are verified by experiment, are not 

dependent on the particular form of equation (294). 

Taking the perfectly general thermodynamic formula (290) we 

may write it in the form 
■To 

(295) E = TJ'ysdT. 

T 

Here T0 will be the temperature of transformation, and will possess 

all the properties above stated. 

163. Effect of changes of volume or pressure. In such cases as 

that of a gas battery where expansion takes place under external 

pressure, an additional variable must be taken into account namely 

the volume V or the pressure p. The equations give 

dU=TdS-Ede-pdV 

and taking the thermodynamic potentials 

%V=U-TS, &«Z7- TS+pV 

we obtain in the usual way 

d$v = SdT—Ede—pdV, 

d%p - - SdT - Ede = Vdp. 

The conditions for a perfect differential now give rise to six 

reciprocal relations between the differential relations; of these the 

only ones which have not been already discussed in §§ 112—114, are 

(296) 
'dE\ _ fdp\ fdE\   /^F\ 

.dV/e,T \de/VtT \dp)e,T \de)PlT 

The last relation shows that the electromotive force increases or 

decreases with the pressure according as the volume decreases or 

increases when a current flows th ouerh t b tt rv. 
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In a constant pressure battery in continuous action at constant 

temperature tbe change of volume depends on the chemical trans¬ 

formations taking place in the battery, and is proportional to the 

quantities of the chemical constituents involved in the change, or 

again to the quantity of electricity that has passed through the 

battery, giving d 
( ) = constant, 
\deJpT ; 

in accordance with Faraday's Law. Thus for example if we take the 

case of hydrogen and oxygen, the value of T will represent 

the difference between the volumes of one electrochemical equivalent 

of oxygen and hydrogen and that of water at the temperature and 

pressure of the cell. We may therefore write 

Hence 

(297) 

2 V V — V 
_ =- —9__— function of p, T only. 

(dE\ = V0~~ V 
\dp/T e 

This equation may be integrated keeping T constant in order to 

compare the electromotive forces of the same battery at two different 

pressures at the same temperature provided the (p, V} T) equations of 

the substances involved are known. 

Example. Suppose the substances to consist partly of solids and 

liquids whose volume may be approximately assumed to be independent 

of the pressure, partly of gases which obey Boyle’s Law. Then at 

constant temperature T 

(298) 
Vn zJ. = A+*Z 

e p 

where A is the change of volume of one electro - chemical equivalent 
JB T 

of the solids and liquids, — that of the gases. Then the integral 

becomes ® 

(299) E(pxT) - E(paT) = A(Pl~Po) + BTlog f- 

The experimental aspect of such equations has been studied by 

Gilbault. 

164. The Peltier and Kelvin Effects. Hitherto we have con¬ 

sidered thermo - electric phenomena that are associated with chemical 

action. We now proceed to discuss more fully those phenomena 

which occur in systems of conductors in which no chemical action 

takes place. Such conductors are called conductors of the first class, 

those previously considered being classed as conductors of the second class. 
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The thermo-electric phenomena occurring at the surface of 

separation of two conductors of the first class are known as the 

Peltier Effect. There is in general a difference of potential (IT) at 

the two sides of the surface, and when a quantity of electricity 

flows across the surface, the energy corresponding to the change 

takes the form of heat absorbed or given out at the surface, in just 

the same way that when friction occurs between two bodies each 

appears to receive heat from the common surface of separation. 

Prom § 160 it appears that in an element in which the only 

electromotive forces are those due to contact, the sum of these, 

representing the total electromotive force, must be of the form CT, 
i. e. proportional to the absolute temperature. 

This result may be generalised by taking a (non-resisting) circuit 

formed of any number of metals. Let II1? JT2, JTS be the electromotive 

forces of contact at the various junctions taken in order round the 

circuit Tly T2j T$ the absolute temperatures. 

Let e units of electricity flow round the circuit in the positive 

direction. Then the quantities of energy gained at the junctions are 

ell1} eIT2, eITz, and these represent the quantities of heat absorbed. 

Since the process is reversible, the sum of the corresponding changes 

of entropy is zero. That is 

(soo) §+ ?; + ?^ + ‘“=0- 
Now let all the temperatures of the junctions but one, Tr be 

kept constant. Then it follows immediately that 

IT 
— = constant, 

-Lr 

and calling this constant G we have 

(301) IIr=CrTr and 2/0 = 0. 

Thus in a reversible circuit in which no other electromotive forces 
occur the Peltier effect at any junction must be 'proportional to the 
absolute temperature of that junction and further the sum of the co¬ 
efficients Or must be algebraically zero. 

In particular the electromotive force in a circuit of two metals 

will be proportional to the difference of temperature of the junctions. 

Now in practice it is found that when the temperature of one 

junction is kept constant and that of the other is raised, the current 

instead of always increasing may vanish and change sign. From this 

it follows that conformably with the laws of thermodynamics, other 

electromotive forces must exist in the circuit. Prom arguments of 

this character Lord Kelvin was led to the discovery of the Thomson 
or Kelvin effect according to which: 
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When differences of temperature exist at different points of the same 
substance, they are in general accompanied by a difference of potential. 

These differences of potential which are here discussed in 

connection with an ideal reversible circuit are of course entirely 

independent of those due to resistance in irreversible circuits. 

The energy absorbed when electricity passes from a place of 

lower to one of higher potential is necessarily supplied in the form 

of heat, and hence the phenomena give rise to reversible heating 

effects which are independent of the irreversible effects due to con¬ 

duction of heat in the cases which occur in practice. To these 

heating effects the name “electric convection of heat” has been given. 

In order to eliminate the effects of irreversible heat conduction, it 

is necessary to assume that the thermal conductivity of the connections 

forming the circuit is negligible. 

The laws of reversible thermodynamics show that under the 

assumed conditions, when a unit of electricity flows round the circuit, 

the sum of the energies given out in the form of heat at the junctions 

and in the conductors is equal to the whole electromotive force 

tending to produce a current in this direction in the circuit, and 

the sum of the entropies given out is zero. 

The last statement shows that the total quantity of entropy 

absorbed when a unit of electricity is made to pass from one point 0 
to another point P of a thermo-electric network is independent of 

the path by which the charge travels from 0 to P. If we denote 

this quantity by %, we notice that since the present result is unaffected 

by the addition or substitution of hypothetical connections of the 

most general character between 0 and P, the quantity % can only 

depend on the temperatures and nature of the substances at 0 and P. 

And by taking 0 to refer to a standard substance at a standard 

temperature we shall have % a function of the temperature and the 

nature of the substances at P which we shall write %(a,T) for 

substance a at temperature T. This function will determine all the 

thermo-electric phenomena occurring in the system. 

Thus if IIab is the electromotive force at temperature T of the 

Peltier Effect between two substances a and b, 

(302) nab = T{%(a,T)-iQ>,T))- 

Again let 6adT represent the electromotive force of the Kelvin 

effect corresponding to the temperature difference dT for substance a 
then since 

6a dT = increase of energy of unit charge corresponding to dT 

= T x increase of entropy = T d% (a, T), 

T d%{a, T) 
dT 

(303) 
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The coefficient 6a has been called by Lord Kelvin the specific 

heat of electricity for substance a at temperature T, because 6adT 
represents the heat absorbed by unit charge for a change of tempe¬ 

rature dT obtained by moving along the wire. It will be noticed 

that 6 and II are connected by the relation 

(304) 

which is identical with the relation between the specific heats and 

latent heat of transformation in a complex of two phases of the 

same substance. This identity is a necessary consequence of the 

physical interpretation of the two equations, which represent the fact 

that the sum of the entropy changes is zero in a circuit of two 

metals and a cycle between the two phases respectively for a 

temperature - difference dT in the neighbourhood of T. 

165. Determination of the Total Electromotive Force. If two 

points are taken in the same homogeneous conductor at temperatures 

T1} T2 the electromotive force between them is given by 

(305) E=JeadT=jTd% (oT) = ®(TS) - 

Ti Ty 

where is a function of T alone. This follows since %{a,T) is 

a function of T alone so long as a is the same. Hence so long as 

the substance is the same, the thermo - electromotive force is derivable 

from a potential <&(T) satisfying the relation 

(306) d<& = Td%. 

To 

Next consider a 

number of conductors 

3 a, l, c, . . . k in series 

with their junctions at 

Tt Tz 
rig. 21. 

temperatures T3, T2, ... Then the expression for the whole 

electromotive force between (a, T0) and (k, Tk) can be written in the 

following various forms 

(307) E - 0 (a, T±) - ff (a, T0) + nab(T^) 
+ <5 (&, jP2) — (&, T0) + nbc(T2) + &c., 

(308) E=f Td%(aT) + T1 {x(JbT:,) - z(aTt)} 

T° T 

+f Td%(b, T) + T2 {z(c, T3) - ZQ>, T2)\ + &c, 

Ti 

or, again, by partial integration the last form gives 
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(309) f %(aT)dT- f %(b,T)dT- &c. 
T0 Tx 

which may he written 

(310) = T,xQc, Th) - Ta(a, T0) -j\ AT 
a, To 

whence for a complete circuit 

(311) E--(f)ZdT. 

We notice the following conclusions; which are in accordance 
with the results of general reasoning: 

(1) If the circuit is all formed of one metal E = 0. 

(2) If the junctions are all at the same temperature E = 0, for as 
in any conductor % is a function of T only, therefore if the two ends 
are at the same temperature, the portion of the integral contributed by 
that conductor vanishes. 

We further notice that the electromotive force in the complete 
circuit is the same as would he obtained hy assuming an electro¬ 
motive force %dT to act between points of the same substance whose 
temperature difference is dT and no electromotive forces would then 
have to act at the junctions. In other words the whole electromotive 
force can be accounted for by a suitably formed expression for the 
Kelvin effect without any Peltier effects. But such an expression 
would not give rise to the same heating effects; nor would it bring 
these heating effects into accordance with the Second Law of 
Thermodynamics. 

166. Converse Problem. — Specification of a Thermo-electric 
System. Next suppose that we have a circuit formed of two metals 
a, b and that we have determined its electromotive force for different 
values of the temperatures Ti, T2 of the two junctions; so that 

E^f(TuT,) 

a known function of Tt and T2. 
Then we may write the relation (308) in the form 

(312) J %(aT) - X(b, T)) dT - / (T1} 2f) 
Ti 

therefore 
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(318) 

(314) X (a, Tx) - % (b, Tx) = - d f%^ 

and by varying one or other of the temperature limits it follows 
that % (a, T) — % (b, T) is determinable from these data for all values 
of T. 

This information is sufficient to completely determine the Peltier 
effect at either junction, but it is not sufficient to determine the 
Thomson effects in the two separate conductors. All we know from 
the assumed data is the difference % {a, T) — % (b, T). If the values 
of one of the expressions % (a, T) be determined by observations of 
the heating produced by the Thomson effect in one of the metals 
the corresponding values of % (b, T) are completely determined. 
Without this additional information the expression for % in any 
substance must be regarded as containing an unknown term in the 
form of an unknown function of T alone which is the same for all 
substances. 

It also readily follows that the thermo-electric properties of a 
number of different substances can be completely determined from 
the following data, each of which may be regarded as the complete 
specification of an ideal thermo-electric system: 

(1) If the specific heat of electricity of each of the substances 
is known as a function of the temperature for all temperatures, and 
the Peltier electromotive forces are known at one particular tempera¬ 
ture between one substance and each of the others. 

(2) If the specific heat of electricity of one of the substances is 
known as a function of the temperature, and the Peltier electromotive 
force between that substance and each of the others is known as a 
function of the temperature for all temperatures. 

In either case the remaining unknown data may be determined 
from the relation 

(315) 
d f^ab\ 6a-% 0 

dT \ T ) T 

or the expressions for % may be obtained directly from (313) or (314). 
Any further experimental data in excess of the minimum must 

be interpreted as tests either of the accuracy of the observations or 
of the validity of the laws of Thermodynamics. 

Example. Let us assume for E the expression proposed by Tait 
namely 

(316) E - kab (Tx - T2) \Tab -i(Tt + T2)] 

where Tah, kab are constants. Then 
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(317) x (a, T) - * (h, T) = kab 0Tab - T) 

whence 

(318) nah = kab{Tab-T)T 

so that Tab is the temperature at which the two metals are neutral 

to each other (JJab = 0), also 

(319) kabT. 

This is as far as we can go by purely thermodynamic reasoning. 

The only plausible hypothesis is that 6a and 6b are both proportional 

to T. If for one substance 6 is assumed as the result of experiment 

to be proportional to T within certain temperature limits, the same 

result is now established for other substances within the same limits, 

subject of course to (319) being true within these limits. 

In the case of lead (say l) it is known from experiment that 

61 is sensibly zero over a considerable range of temperature; on this 

hypothesis 

(320) 6a — — kaiTj 6b = — kbiT} kab = ka% — kbi 

and if the above result for lead should be shown to be only 

approximately true, the first hypothesis would still give 

(321) 6a — — kaT} 6b = — kbT} kab — ka — Jcb. 

ka, kb in this case being referred to an ideal substance (T) for which 

6 = 0. We further have by cyclic addition of (319) 

(322) (Jcb — ifec) Tbc -f- (kc — ka) Tca -4- (ka — kh) Tab = 0 

whence we may write 

(323) %{a,T)-ka(Ta-T), 

(324) %Q>,T)-h(Tb-T), 

supposing Ta> Tb to be the neutral temperatures of a, b with respect 

to lead or the ideal substance (V) referred to. The integration constant 

which occurs in the value of % (depending on the initial state assumed 

in the definition of %) is here made to vanish by taking the initial 

state in the substance l. 

167. Effects of the Currents on Localisation of Energy and 
Entropy. The phenomena discussed in the preceding articles afford 

evidence that thermo-electric currents may alter the localisation both of 
energy and entropy. 

Suppose any number of conductors, maintained at a distribution 

of temperature which is independent of the time, to be placed in a 

thermo-electric circuit, and after a quantity of electricity e has 
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passed through, the circuit suppose the conductors to he isolated. 

Then energy and entropy have been absorbed at the conductors 

during the passage of the current, yet at the end there is no change 

in the state of the conductors themselves. It is therefore clearly 

absurd to suppose that this energy and entropy have been stored in 

the conductors, and we have no alternative but to suppose them to 

be localised in the electric charge itself. 

So far as energy is concerned, this view forms the basis of the 

most elementary theories and no better evidence can be adduced 

than the important applications of electric transmission of power, by 

which for example, energy is made to change its localisation from a 

waterfall to a tramcar. 
Consistently with the theories of the previous articles we have 

now to assume that the entropy which for charge e at temperature T 
in substance a is denoted by e%(a,T) ts localised m the charge itself, 
and that during all peregrinations of the charge, a certain amount 

of entropy follows it about. When owing to the changes in a or T, 
the function % increases, entropy is picked up by the charge, when 

it decreases, entropy is left behind. 

In the case of a charged conductor whose temperature is being 

raised, we may first suppose the charge brought to the conductor 

from a fixed base, and after the conductor has been heated we may 

suppose the charge returned to the same base. The principle of 

conservation of entropy for reversible cycles requires that entropy 

shall be supplied during the process of beating, represented by the 

increase in the value of %. If no other phenomena exist which can 

account for the change, we infer that heat must be supplied to the 

conductor, over and above the amount required if the conductor 

were uncharged, and that the uspecific heat of electricity” is the 

proper thermal coefficient in this case as it is in connection with 

“electric convection of heat”. 

CHAPTER XVIL 

GEOMETRICAL AND DYNAMICAL REPRESENTATIONS. 

168. Thermodynamic Models of a Simple System. The method 

of representing the thermodynamic properties of a simple system, 

such as a homogeneous fluid by means of a geometrical surface in 

three dimensional space is due to J. Willard Gibbs. For convenience 

we shall suppose the quantities involved to refer to unit mass, 

though the methods will be closely analogous if the whole mass of 

the substance is considered. 
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Taking x, y, z to denote coordinates generally if we put 

x = v, y = s, z = u 

where v, s, u are the volume, entropy and energy of unit mass at 
the substance, we see that since for any given substance, u is a 
definite function of v, s, say 

^ = f(p, 4 

the point (v, s, u) lies on a certain surface which may be regarded 
as a thermodynamic model of the substance. 

We may construct other surfaces representing the thermodynamic 
properties of the substance by taking 

or again 

or lastly 

X = Vy y = T, 2 = fe 

X=Py y = T, Z = fp 

X = Py y- s, e = f* 
where f*,, f* are the thermodynamic potentials, 

f» = u — Ts, [p^= u — Ts + pv} fs = u + pv. 

Of the four surfaces thus defined any one is sufficient to 
determine the thermodynamic properties of the substance. The most 
convenient however as a general rule are the (v, Sy u) surface and 
the (p, Ty fp) surface. The first is usually spoken of as the volume- 
entropy energy diagram, or thermodynamic model; the second is 
often called Gibbs7 Zeta surface, the Greek letter £ being used by 
Gibbs to denote the potential which we have denoted by \p. 

169, Reciprocal properties of the volume-entropy-energy and 
pressure-temperature-potential surfaces. We may conveniently study 
the properties of these two surfaces side by side, and it will be 
observed that they are connected by the principle of duality. 

The (v, 5, u) surface. 

The equation of the tangent 
plane at any point of the surface is 

* - u = (*-«)§£ + 0-s)§7 
that is 

z — u = — (x — v)p + (y — s)T 

or 

z = —px + Ty + fp. 

The (p, Ty fp) surface. 

The equation of the tangent 
plane at any point of the surface is 

* - f* = 0 -p) + (y - T) w 
that is 

e — fp = (« — p) v — (y — T) s 

or 

z = vx — sy + u. 
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Hence —p, T, y are the tangential 
coordinates of the point u, s, v 
when the equation of the tangent 
plane is put in the form 

0 = lx + my + n. 

The condition of stability in 
the state (v, s, u) requires that for 
any neighbouring state (V, sr, ur) 

ur > u — p (V — v) + T(sf — s). 

If now the line through (V,sf,uf) 
parallel to the axis of 0 meets the 
tangent plane at (v, s, u) in the 
point (V, sr, 0) this gives 

v! > 0. 

Hence the £ coordinate of the 
surface is greater than that of the 
corresponding point on the tangent 
plane, that is the surface is concave 
towards the positive direction of 
the axis of 0 or u. 

Hence v, — s, u are the tangential 
coordinates of the point p, T, fp 
when the equation of the tangent 
plane is put in the form 

0 = lx + my + n. 

The condition of stability in 
the state (p, T, y) in the opposite 
column, leads to the result that for 
any neighbouring state (p!, T1, f/) 

fp < y + V! (p —p1) — s' (T— T1). 

If now the line through (p, T, y) 
meets the tangent plane at the 
neighbouring point (p\ T!, in 
the point (p, T, 01) this gives 

y ^ ^ ‘ 

Hence the 0 coordinate of the 
surface is less than that of the 
corresponding point on the tangent 
plane, that is the surface is convex 
towards the positive direction of 
the axis of 0 or y 

[The reciprocal properties of the two surfaces are easily seen to 
be consequences of the theory of polar reciprocation in geometry. 
For supposing two surfaces 

1h) and %=fs(z2>ys) 

to be polar reciprocals with respect to the paraboloid 

a? + y2 = 2 0, 

then since the tangent plane at (xt, yl} 0±) is the polar plane of 
(x2, y2, z2) the equations 

and 

dz, , d zt 
x-—- + y j-1 

dxx * dyx 

0 + 0% 

( dz, , dz, 

~~ V1 dx, 2/1 dy\ 

= + yy2 
are identical giving 

d z, dz, 
^ = d£’ V^d£’ 

d zx d zx 
Xl dxx y* dyx 

which are exactly the same as the relations connecting the coordinates 
on the two surfaces with certain differences of sign.] 



THERMODYNAMIC MODEL OF A COMPLEX. 177 

170. Properties of a complex. 
If two pliases coexist then the 

corresponding points on the (v} s, u) 
surfaces have a common tangent 
plane determined by the tangential 
coordinates (p, I\ fp) which are 
the same for both phases. 

If three phases coexist; p, Ty \v 
are the tangential coordinates of a 
triple tangent plane to the three 
corresponding parts of the thermo¬ 
dynamic surface. 

The boundary between any two 
phases is determined by a tangent 
plane rolling in double contact 
with the two corresponding parts 
of the surface; this plane envelopes 
a developable surface. 

If two phases coexist then the 
point (p, T, f^) lies on a curve of 
intersection of the corresponding 
parts of the thermodynamic sur¬ 
faces. 

If three phases coexist then 
the point p, T, fp is at the common 
intersection of the three correspond¬ 
ing parts of the thermodynamic 
surface. 

The boundary between any two 
phases is determined by the curve 
of intersection of the two cor¬ 
responding parts of the thermo¬ 
dynamic surfaces; and the proj action 
of this curve on the plane of (p, T) 
determines the curve of saturation 
referred to p, T as variables. 

171. Representation of an actual complex on the 0; s, u) surface. 
Let (vf, s'; u1) and (vn, s!f, u,r) represent two phases of the substance 
which can exist in the presence of each other. Then if m1, mfl are 
the masses of the two phases occurring per unit mass in any complex 
formed of them, the volume, entropy and energy per unit mass of 
the complex are given by expressions of the form 

v = mlV + Mftvfr, 

and hence the point (v, s, u) referring to the complex lies on the 
straight line joining the points (V, sr, ur) and (vn} sny v!1), and is the 
centre of mean position, or centre of mass of masses m!, mtf at the 
two points (vf9 s!, u!) and (vrt, sr,} u!t). The locus of such points is 
the developable surface enveloped by the double tangent plane to 
the (v, 5, u) surface of the two phases. 

Similarly for a complex of masses m!, mrr, mtn of three phases 
at the triple point the volume, entropy and energy per unit mass of 
the complex are the coordinates of a point on the triple tangent 
plane which is the centre of masses m\ mn7 mw at the respective 
points of contact. 

Now take the plane of {v, s) as the plane of projection; let 
S, L, V be the projections of the points of contact of the triple 
tangent plane corresponding to the solid, liquid and gaseous states, 
and let the thick curved lines represent projections of the loci of 

Bryan, Thermodynamics. 12 
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points of contact of the double tangent planes. Then any point on 
the triple tangent plane within the triangle LVS represents a complex 
of three phases, any point on one of the developable surfaces between 
the triangle and the curved lines represents a complex of two phases, 
and any point outside these regions represents a simple phase only. 

The continuity of the liquid and gaseous states is accounted for 
by supposing that as the double tangent plane rolls, the two points 
of contact ultimately coincide at some point which represents the 
critical point. 

The thermodynamic surface remains concave towards the direction 
of v positive to some distance within the curved lines, and if the 
dotted lines represent the limits of concavity the substance can exist 
in a metastable state represented by points on the surface between 
the dotted and continuous lines. The curves bounding the absolutely 
stable and metastable regions touch at the critical point, as may be 
shown without difficulty. 

172. The surface of dissipated energy. This name has been 
given to the composite surface made up of 

(a) the portions of the thermodynamic (v9 s, u) surface beyond 
the lines of contact of the double tangent planes which therefore 
represent essentially stable states, 

(b) the developable surfaces joining the points of contact of 
double tangent planes representing all complexes of two phases, and 
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(c) the plane triangle formed by the triple tangent plane which 
represents all complexes of three phases. 

This surface represents the locus of all points at which the 
energy is a minimum for given volume and entropy consistently 
with the thermodynamic properties of the substance. It therefore 
represents all absolutely stable states of the working substance. 

It should be noticed that in the case of a substance, like sulphur, 
which is capable of existing in four different phases (not all at the 
same pressure and temperature) and which has three triple points, 
the surface of dissipated energy will include three triple tangent 
planes as well as the different developable surfaces (six in number) 
connecting them. 

173. Representation of a complex in the (p, T, y diagram. It 
is easy to see that the volume, entropy and energy of an actual 
complex are represented in the {p, I\ y model by the coordinates 
(tangential as previously specified § 229) of a plane (L say) whose 
equation may be written, for the respective cases of a double or 
triple point in the forms 

(325) m'L' + m”L” = 0 

or 

(326) mfL! + m"Ln + mmLftt = 0 

where m!, m,!, m,lr represent masses of the phases occurring in unit 
mass of the respective complexes and 

II == 0, L” = 0, Lw = 0 

are the tangent planes to the sheets of the (p, T? y surface representing 
the corresponding phases. 

If the fp axis is measured upwards the surface of dissipated 
energy consists of the portions of the thermodynamic surface which 
are convex upwards and extend up to but not above the double lines. 
The portions above these lines which are convex represent metastable 
states (§ 141). There is no region representing a complex, but when 
a substance passes in gradually increasing quantity from one phase 
to another the representative plane L turns in contact with the 
double line on the upper side of the surface from one tangent plane 
to the other. 

174. Cases where the composition is variable. Except in the 
case of a simple system the number of variables is too great to 
enable the thermodynamic properties to be completely represented by 
a model in three dimensional space. If there are two components 
we have one variable too many, if there are three, we have two 
variables too many. It is necessary therefore to assume some further 

12* 
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condition or conditions before a model can be constructed. The most 
interesting applications of thermodynamic surfaces are those which 

refer to 
(1) a mixture of two components when the pressure is kept 

constant, 
(2) a mixture of three components when the pressure and tem¬ 

perature are both constant. 
For more than three components the proportions of which are 

capable of independent variation a model in three - dimensional space 
is no longer sufficient. 

The choice of coordinates depends mainly on the problem to be 
studied. For a detailed discussion of experimental aspects of the 
problem the reader is referred to the many excellent treatises on 
physical chemistry. 

For the purposes of theoretical discussion the best variables to 
take are the partial potentials of the components, with the temperature 
as a third variable if there are only two components. For practical 
purposes the variables should be so chosen as to specify the percentage 
composition of the mixture. 

175. The partial potentials of the components as coordinates. 
Consider first a mixture of two components a, b at constant pressure p, 
and take as coordinates 

oo = Pa, y = i*b, $ = t. 

Then since by the properties of the mixture p is a function of [ia, fib 
and T, the equation 

(327) p = constant 

determines a surface which is the thermodynamic model of the 
mixture at constant pressure p. 

Moreover the points of intersection of two or three sheets of the 
surface determine states of phase equilibrium between two or three 
phases respectively. 

From the equation 

— vdp + sdT + Umdp =» 0 

it follows that the equation of the tangent plane can be written 

(328) (x — pa) ma + (y — pb) mb + (js — T) 8 = 0. 

Hence if the tangent plane is cut by the plane z = constant, its 
trace on that plane makes with the axis of & an angle whose tangent 
is — ma mb and this determines the ratio of ma to mb} the actual 
masses in a unit mass of mixture being got by putting 

Ma + Mb = 1. 
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Again put 
x = y = r cos 45° 

in the equation of the tangent plane; then remembering ma + mb=l 
we get 

(329) #S + -f-yj/2 = constant. 

Hence if cp be the inclination to the axis of 8 of the line in 
which the tangent plane meets a plane making angles of 45° with 
the axes of x and y, 

(330) tan cp = 8 ]/2 

and hence the direction of the tangent plane determines not only 
the composition of the mixture but also its entropy per unit mass. 
This information is useful in determining whether a given change of 
phase is accompanied by absorption or evolution of heat. 

176. In the case of three components, the equations 

p = constant, T =• constant 

determine with the fundamental equation of the mixture a single 
equation between pb, p0 so that taking the coordinates to be 

00 = pa, V^Pb, 0 = Pc 

the point (x, y, 8) lies on a surface which is a thermodynamic model 
of the mixture at temperature T and pressure p. 

The tangent plane to the surface is given by 

(x — Pa) ma+ (y — pb)mh + (* — pe) = 0 
or 

(331) max + MbV + wh# ~ \P = 0. 

The direction of the tangent plane thus determines the percentage 
composition of the mixture and its position determines the potential fp 
(which however is known independently when ma) mbj mc are known as 
well as the partial potentials). 

If we put ma = 0 we see that the tangent plane is parallel to 
the axis of x. This is true whether we are dealing with two or 
three components. The curves determined by this condition and by 
similar conditions representing the absence of the other component 
or components determine the boundary of the thermodynamic surfaces. 
The bounding curve ma = 0 is the line of contact of an enveloping 
cylinder whose generating lines are parallel to the axis of x. 

If through any point P of this boundary a line be drawn 
parallel to the axis of x and meeting another sheet of the thermo¬ 
dynamic surface in a point Q on the negative side of P; equilibrium 
will exist between the phase represented by Q and the phase with 
the absent component represented by P. 
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177. Case of two components when one coordinate determines 
the percentage composition. If x and 1 — x are the masses of the 
two components in unit mass of a mixture we may take as co¬ 
ordinates x, T and fp, x lying between 0 and 1, and the thermo¬ 
dynamic surface will then be given by p = constant. 

The equation 

d\p = — SdT -f 7dp + dm 

= — SdT + (pa — lib) dx 

shows that the equation of the tangent plane may be written in the 
form 

(332) 0 — fp=* — S(y — T) + (fia — pb) (x' — x) 

if we write x1 for the coordinate on the tangent plane. We have 
moreover 

fp = [laX + Pb (l - %) 

whence the equation of the tangent plane becomes 

(333) 0 = — S (y — T) + \iax' + [it (1 — %f). 

The tangent line in the plane y = T is given by 

(334) 0 =■ [iax! + iib(l — x!) 

and hence [ia, ybb are 
the intercepts which 
it cuts off from the 
lines xr = 1, x! = 0 
respectively. 

If two phases are 
in equilibrium, they 
lie in the same sec¬ 
tion T = constant, 
and we now see that 
they have a common 
tangent line in that 
plane. It readily fol¬ 
lows that in any sec¬ 
tion, a double tan¬ 
gent line will repre¬ 
sent a complex of 
two phases, and the 
essentially stable sta¬ 

tes at temperature T will be represented by points on the convex 
line found by the sections of the thermodynamic surface and its 
double tangents. 
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Now making T variable let the double tangent move along the 

surface always remaining parallel to the plane y = 0, and let the 

curves which it traces on the surface be projected on the plane of 

{x, T). We shall thus have the plane divided into regions, showing 

the limits of percentage composition and temperature corresponding 

to single phases or a complex of two phases. These are the concen¬ 

tration and temperature diagrams commonly found in treatises on physical 

chemistry, and Fig. 23 shows an example of them, giving the relation 

between the concentration of a solution of dimethylamine in water 

and the temperature. 

178. Case of three components. — Use of triangular coordinates. 
For three components the masses per unit mass of the mixture are 

connected by the relation 
Ma + mb + Me = 1 

and a convenient way of repre¬ 

senting quantities of this kind 

in a plane is by the use of axial 

or triangular coordinates. If 

ABC is any fixed triangle, 

M any point in its plane, and 

if a, ft, y denote the ratios 

A BMC A GMA AAMB 
AABG9 A ABC' A ABC ’ 

a, p, y are the triangular coordinates of M and satisfy the relation 

a + P + 7 = 1- 

We may take a, /3, y to represent the masses of the components and 

a line MB perpendicular to the plane to represent the potential fp, 

so that the coordinates of F will be 

a = ma, P = mb, y = mCj ss = fp 

and the thermodynamic surface is given by 

p = constant, T = constant. 

Substituting these values in the differential equation 

= - SdT + vdP+ JSpdm, 
and noting that 

fp = Zyyyij 1 == Um 

the equation of the tangent plane reduces to 

(335) 0 = apa + Pllb + y\L6C. 

Putting /3 = 0, y = 0, a = 1, we get z == fia: Hence the potentials 

liaf [ibf ilc are the heights of the tangent plane above the vertices 

Fig. 24. 
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A, B, G\ the condition of phase - equilibrium requires that the points 

representing the three phases shall have a common double tangent 

plane. The points of contact of these double tangent planes will 

divide the triangle ABC into regions representing the limits of per¬ 

centage composition of single phases and of complexes of two phases. 

In forming the surface of dissipated energy the double tangent 

plane must be rolled on the upper side of the bounding curves in 

the planes, a = 0, = 0, y = 0, thus determining the regions 

representing complexes in which one constituent is absent from one 

of the phases, and it must also be turned about the highest points 

on thermodynamic surfaces above the vertices of the primitive triangle, 

thus determining regions in which one of the phases contains only 

a single constituent. 

Pig. 25 (after Wilder D. Bancroft1) is an instance of the diagrams 

occurring in treatises on physical chemistry, the three components in 

this case being the nitrates of lead, potassium and sodium. It differs 

JB 

Fig. 25. 

from the theoretical diagrams discussed above in the fact that the 

temperature is not the same at all points. To be complete, the diagram 

would have to be crossed by a series of isothermal lines. For a more 

detailed discussion the reader is referred to the treatises in question. 

1) Phase Buie. 
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Description of Figure 25. 

A is corner for KN03. 

B is corner for Pb(N03)2. 

C is corner for NaN03. 

At D KNOs and NaN03 are in proportions corresponding to 

eutectic alloy. 

F = eutectic alloy of KN03 and Pb(N03)2. 

F = eutectic alloy of NaN03 and Pb(N03)2. 

Along DO, solid phases are K and NTa nitrates; 

Along EO, solid phases are K and Pb nitrates; 

Along F 0, solid phases are NTa and Pb nitrates. 

At 0 exists nonvariant system of K, Pb and Na nitrates, solu¬ 

tion, and vapour. 

Field ADOE represents a divariant region of» KNOs, solution, 

and vapour. 

Field CD OF represents a divariant region of NaN03, solution, 

and vapour. 

Field BE OF represents a divariant region of PbN03, solution, 

and vapour. 

179. Dynamical Model of Carnot’s Cycle. The equations of 

reversible thermodynamics being analogous in form to those of 

rational mechanics with the addition of one extra independent variable 

and the corresponding dependent variable obtained by the differentiation 

of a potential function (the variables being temperature and entropy, 

and the function being the suitable thermodynamic potential), it 

naturally follows that a dynamical model can easily be constructed 

which is capable of representing the phenomena of reversible thermo¬ 

dynamics. 

A very simple model of a simple system is shown in the 

Fig. 26, on p. 186. A shaft which can rotate freely about a vertical 

axis carries an projecting arm on which a bead of mass m can slide, 

and the distance r of the bead from the axis can be varied by pulling 

a string passing over a pulley and through the middle of the shaft. 

To prevent the string from twisting indefinitely with the rotation 

of the shaft a small swivel may be fixed in its vertical part. We 

suppose work done by the tension of the string to represent the 

mechanical work dW of thermodynamics, whereas work done by 

applying a couple about the axis of the shaft represents the communi¬ 

cated heat dQ. The source and refrigerator of Carnot’s cycle may 

be represented by flanges rotating above and below the vertical shaft 

with constant angular velocities co1 and ra2 respectively. Heat com¬ 

munication may be represented by bringing one of these flanges into 
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contact with flanges fixed to the shaft itself (as shown in the figure). 
If two flanges are only brought into contact when their angular velo¬ 
cities are equal the motions will be conservative and reversible as in 

the thermodynamical process 
where the working substance is 
only brought into contact with 
the source or refrigerator when 
their temperature are equal. 

The four processes of Car¬ 
not’s cycle will be represented 
as follows: 

(1) The shaft starts with 
angular velocity co2 and is dis¬ 
connected from both flanges. 
The string is pulled till the 
angular velocity of the shaft 
becomes equal to uq the angular 
momentum remaining constant 
and the moment of inertia de¬ 
creasing. 

(2) The shaft is connected 
with the “source” oq and absorbs 

energy Qx from it, this energy causing the bead to fly outwards and 
a certain quantity of external work being done by the tension of the 
string. 

(3) The shaft being disconnected and free undergoes an “adiabatic” 
transformation in which the angular momentum remains constant and 
the angular velocity decreases from cq to o2 as the bead recedes 
further from the axis. 

(4) The shaft is now connected with the “refrigerator” co2 and 
the bead slowly drawn back to its initial position, energy being 
given to the refrigerator. 

A Watt’s governor with a similar arrangement of rotating flanges 
for the source and refrigerator will lead to an essentially identical 
cycle. 

If # is the angular coordinate of the shaft, I the moment of 
inertia apart from the bead, the energy of the shaft is 

L = y (I -f mr2). #2 = y (J + mr2) go2 

and if h is the angular momentum 

h = (1 -f mr2) co, L = hco» 



DYNAMICAL MODEL OF CARNOT'S CYCLE. 187 

If G is the couple applied to the shaft, Lagrange’s equation of 
motion gives 

p  d (dL\ dh  dh 
dt \da) d& ~dt 

and the work done by this couple while in contact with the source 
is given by 

dQx = Gcox dt = "^r dt 

whence for the whole work 

Qi = oox (hx — h±) 

where \ and hx are the initial and final angular momenta. Similarly 
for the work energy communicated to the refrigerator 

Q% ^ ^2 Oh. ^2) 
leading to 

(336) Qi_Qi 

This equation is exactly analogous to the equation 

Qi Qi 
X T, 

of Thermodynamics. Angular velocity represents temperature and 
angular momentum represents entropy. 

A further analogy is afforded by the fact that work done by 
the pull of the string represents available energy, whereas work 
cannot be obtained through the angular coordinate by reversible 
methods except by bringing the shaft into contact with another shaft 
rotating with the same angular velocity; energy communicated in this 
way is therefore not wholly available (compare also §§ 43, 44). 

We notice that in the more general case when the shaft has a 
couple G applied to it in any manner 

(337) 

so that 

dQ “ ® dt = (D dh 

dA 
G) 

analogous with 

But co is not the only integrating divisor of dQ. The most general 
form of integrating divisor is co multiplied into a function of h, and 
the energy L is itself an integrating divisor, thus 

(338) ^ = 2 ^ = d log ¥ 

another analogue of the thermodynamic equation, L taking the place 
of temperature and log h2 + const, the place of entropy. Since 
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h2 = 2(I+mr2)L 

the expression for the entropy in this case takes the form 

(339) s = log L + log (J + mr2) + const, 

resembling more closely the form for a perfect gas 

s = yv log T + B log v + const. 

and affording confirmation of the view that temperature is a quantity 
of the nature of the kinetic energy. 

The analogy with thermodynamics does not extend to the irre¬ 
versible processes arising when two shafts with unequal angular 
velocities are brought into contact. In the dynamical model the 
angular momentum or entropy remains constant and the energy 
decreases. 

180. Monocyclic systems. The model described in the last para¬ 
graph is an example of what von Helmholtz calls a monocyclic system 
or system containing one circulating motion; a system containing 
more than one circulating motion is called polycyclic, and both are 
included under the general name of cyclic system. The coordinates 
defining the circulating motions are called cyclic or uncontrollable 
coordinates; (so that the angular coordinate of the shaft of the above 
model is a cyclic coordinate). The remaining coordinates (such as 
the distance of the sliding mass from the axis) are spoken of as 
controllable or non-cyclic. Exact definitions of these terms are given 
by the following assumed properties of the system: 

(1) The kinetic and potential energies of the system do not depend 
on the cyclic coordinates themselves, but the kinetic energy is a 
function of their rate of change. 

(2) In variations of the state of the system the rates of change 
of the non-cyclic coordinates are small and the same applies to the 
accelerations of both classes of coordinates. 

Let qaj qb be types of the generalised position coordinates, the 
suffixes a, b referring respectively to non-cyclic and cyclic coordinates. 
Let Pa, Pb he the corresponding impulse-coordinates or generalised 
momenta, JPaj Pb the force-coordinates so that Pdq represents the 
work done on the system in the displacement dq. Then if U denotes 
the total energy expressed as a function of the position and impulse- 
coordinates, L, V the kinetic and potential energies, Hamilton’s 
modification of Lagrange’s equations gives for either class 

dq__ dU_ dL , -n_dp dU 
dt ~~ dp “ dp ancl r “ dt + dq * 
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In virtue however of the above assumption as to qb, we have 

and if dQ is the whole work communicated through the coordinates 
qb in time dt 

where 
dQ = 2Pb dqb — 2 

dPbdjk 
dt dt 

dt — 2qb dpb 

2*“ 
dJ±. 
dt 

If L is the kinetic energy, L is expressed in the above method 
as a homogeneous quadratic function of the momenta pa, pb, therefore 

= 2pb qb (neglecting qa as assumed). 

For a monocyclic system we therefore have 

(340) ^ = dpi,, ^ = 2 d log pb 

so that either qb or L is an integrating divisor of dQ. These results 
are analogous in form to the thermodynamic equation 

but as Helmholtz points out, it is more difficult to obtain dynamical 
properties representing temperature equilibrium between two bodies, 
especially seeing that the condition for this in thermodynamics is that 
the integrating divisors of dQ for the two bodies are equal. As to the 
phenomena of heat flow between unequally heated bodies, a purely 
dynamical representation is precluded by the very character of the 
assumed dynamical equations, unless recourse is had to arguments of 
a statistical character, and even then, some assumption must necessarily 
be made. 

A polycyclic system does not in general possess an integrating 
divisor for dQ. If however the changes which take place in it are 
such that all the cyclic velocity coordinates are always increased or 
decreased in the same ratio, then L will be an integrating divisor 
of dQ. It is to be observed that in this case the velocities are all 
expressible in terms of a single variable so that the system really 
remains monocyclic. 

This condition is satisfied by a large assemblage of molecules 
whose velocities are distributed according to the usual Boltzmann- 
Maxwell Law of the Kinetic Theory of Gases, provided that the 
variations represented by dQ take place so slowly that this law of 
distribution continuously re-establishes itself. 
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181. The Clausius -Szily System. — Stationary or Quasi Periodic 
Motions. The results arrived at as the result of a number of papers 
published by Clausius and Szily between the years 1870 and 1876 
may be said to lie on the borderline between non-statistical and 
statistical methods. In this method we consider a number of molecules 
whose motions individually are uncontrollable and for simplicity we 
shall represent them by masses mt at m2 at (x%, y2) #2) 
and so on. We suppose in addition that there are certain controllable 
coordinates, qt, q2, qs, . . . entering into the expressions for the energy 
of the system 5 thus for a mass of gas, the volume of the containing 
cylinder would be a coordinate of this character. The changes of 
these coordinates are so slow compared with the motion of the 
molecules that their velocities are neglected and the kinetic energy 
is therefore entirely molecular. We assume that the character of the 
motion is capable of variation independently of the coordinates 
qu Sg; • • • and that represents energy imparted to the system by 
this independent variation. Taking L and V to be the kinetic and 
potential energies we have 

L = y 2Jm (x2 + y2 + k2) 

dV = 
dV 
dz •>) + *%** 

From the methods of the Principle of Least Action 

*2 

8j 2Ldt = |~2m (x 8x + y 8y + 0 

+— 2m (x 8x -J- y8y + z 8z~)\ dt. 

By D’Alembert’s principle 

2m {x 8x + y 8y -\-z 8z) 

(dV * , AV ^fdV . , AV . . dV «, \ 

■z{dZs* + -Aj8y + -al**) 

= SV-2^8a 

= dF+ 8W 

where dW is the external work done through the q coordinates. 
Also by conservation of energy or the first law 

SQ = SU+dW=dL + dr+ SW. 
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It readily follows that 

d f 2 L dt = (x dx -j- y $y “t & d#)J^ -hf dQ dt. 
tx 

Putting t2 — tx = ni where n is any numerical quantity whatever 
(integral or fractional), and using a bar drawn over the letters to 
represent mean values taken over the time interval ni, the first and 

last integrals become nS(2iL) and niSQ and we obtain 

+ y $y + 
k 

niL 

Now there are many definite systems performing definite motions 
in which we are justified in assuming that the time interval 

4 —- ^ = ni 

may be so chosen that the term 

(341) (xSx + ySy + zdz) 

either vanishes or lies between finite limits however large be the 
value of n, so that by making n sufficiently large the quotient of 

this expression when divided by niL may be made as small as we 

please. And the value of d log (iL2) is not affected by replacing i 
by a numerical multiple of i, that is by altering n, if the mean 

value L is taken over the same time interval ni. Such cases may 
be specified by introducing the term “quasi periodic” to characterise 
the particular systems performing the particular motions to which 

this assumption applies, and we then obtain the property that L 

is an integrating divisor of SQ the quantity taking the place of 

entropy then taking the form log (iL) . 

At the same time the interpretation of the quantity i raises 
difficulties which have to be examined in detail in applying the method 
to any particular case. 

182. Energy accelerations. By introducing the concept of energy 
accelerations it is possible to obtain for a conservative dynamical 
system relations analogous in form and dimensions to the temperature- 
relations which determine the equilibrium or non-equilibrium of heat, 
such relations being compatible with the view that temperature is a 
quantity of the nature of molecular kinetic energy and is therefore 
a homogeneous quadratic function of the velocity-coordinates of the 
system. 
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Considering a system of masses m at points (x, y, 0) moving 
with, velocities (u, v, w) and supposing the potential energy due to 
their mutual actions as well as to the field in which they are placed 
to be V and taking the equations of motion 

du d*x dV 
d t dt 0 oc 

and supposing the suffixes 1, 2,. . . to refer to different particles, it 
will be found that if we form the first differential coefficients with 
respect to t of the squares and products, such as 

u2, uv, vtv2>. . . 
the signs of these will be reversed by reversing all the velocities 
and this is not what we want, but if we form the second differential 
coefficients 

d* 2 d* , s 

Wu> 3F (“*)>••• 

which we call the accelerations of these quantities, these can be 
expressed in the form of quadratic functions of the velocities plus 
constant terms. 

These forms show that the accelerations thus defined are 
unaltered in sign when the velocities are reversed in sign, and that 
the squares and products in question obey differential equations of 
the second order analogous in form to the equations of ordinary 
dynamics. For instance we should have 

(| uA=-4 gF)2- Ui-yu~ dir \ 2 1 / wx2 \dxj m1 Sj \ dx 
d\dV , d\< 

^ W dz) dxx 

The variables (other than position variables) occurring in these 
equations include those necesssary to define the components of kinetic 
energy corresponding to the different particles and coordinates, and 
the equations may be thus used to determine the conditions of energy- 
equilibrium as well as the variations of the energy-components relative 
to their equilibrium values, just as we consider in Dynamics equilibria 
of position and motions relative to states of equilibrium, determined 
by the accelerations of the position coordinates. 

If two collections of particles be brought within working distance 
of each other the new state of energy-equilibrium must be determined 
with reference to the system as a whole, and energy-accelerations 
will be set up different to those which existed previously. These 
will be of such a character as to bring the systems towards a stable 
distribution or away from an unstable distribution just as two unequally 
heated bodies when placed in contact tend to a stable state of 
uniform temperature. 
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A simple illustration of redistribution of energy is afforded by two 
pendulums of nearly equal mass and period brought within each other’s 
influence. If one is swinging and the other initially at rest energy 
passes from the former to the latter and back so as to make the 
average energy the same for both when taken over a cycle of changes. 
With two pendulums it is easy to separate them when the energy 
is all in one, but if we had a hundred pendulums and the average 
energy of fifty of them were initially different by a finite amount 
from that of the rest, the energies of the pendulums would fluctuate 
about an average distribution so that after a short time the average 
energy of the first fifty would never differ from that of the others 
by more than a very small fraction. 

183. Duhem’s Theory of false Equilibria. According to the 
theories of chemical equilibrium as previously discussed a substance 
S will pass from one phase to another as soon as its potential in 
the first phase becomes greater than in the second, and vice versa. 
In a thermal diagram, according to this view, the curve of transition 
from phase 1 to phase 2 will be identical with the curve of tran¬ 
sition from phase 2 to phase 1, and will be the locus of points for 
which the potentials in the two phases are equal. Now it is found 
in practice that two phases may often remain in contact without any 
change taking place even when the conditions of equilibrium obtained 
by the methods of conventional — or as Diihem calls it “classical” 
Thermodynamics are not satisfied. In such cases the curve of 
transition from phase 1 to phase 2 will be different to the curve 
of transition from phase 2 to phase 1, and the curve of true equilibrium 
will be bordered by a region of “false equilibrium” in which the sub¬ 
stance will remain in whichever phase it happens to be without 
any change taking place. If the borderline of this region is reached 
an explosion not unfrequently accompanies the change. These cases 
of false equilibrium have been explained by Duhem on the assumption 
of a resistance analogous to friction which tends to prevent a sub¬ 
stance from passing from one phase into another. If the difference 
of potential in the two phases is less than the friction, the system 
remains in false equilibrium, if it is greater the false equilibrium 
breaks up. As in mechanics, the friction always acts in the opposite 
direction to that in which transformation tends to take place, and 
the amount of friction called into play is just what is necessary to 
prevent a change from taking place, provided that this amount is 
less than the limiting friction. 

This frictional resistance differs from viscosity in that the latter 
diminishes indefinitely with the rate of change or velocity. A 
resistance of the latter character merely retards the tendency to 

Bryan, Thermodynamics. 13 
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assume a state of equilibrium, but can never maintain tbe system 
indefinitely in a different state; it would not therefore account for 
phenomena like false equilibria. The conditions under which an 
explosion occurs when a state of false equilibrium is broken have 
also been investigated by Duhem, who has shown that they admit 
of a simple geometrical interpretation. 

An example of false equilibrium is afforded by a mixture of 
oxygen and hydrogen at ordinary temperatures. If the mixture is 
ignited by an electric spark a violent explosion takes place. 

A mechanical illustration is afforded by a cylinder containing 
gas, furnished with a tightly fitting piston, between which and the 
cylinder friction acts, and on which various loads can be placed. 
In the absence of friction, the load would by Boyle’s law be 
inversely proportional to the volume, and the curve representing 
the relation between volume and load would be a rectangular 
hyperbola. Owing to friction however this “curve of true equilibrium” 
is bordered by a region of false equilibrium, and the boundaries of 
this region will be rectangular hyperbolas above and below the 
curve of true equilibrium at distances from it representing the limi¬ 
ting force of friction. One of these boundaries will represent the 
relation, between volume and load when the piston is ascending, the 
other when the piston is descending.1) It should however be 
mentioned that differences of opinion exist regarding Duhem’s theory. 

1) J. W. Mellor, Chemical Statics and Dynamics, London, Longmans, 1904. 



CONCLUSION. 

GENERAL SUMMARY OF THE FOUNDATIONS 

OF THERMODYNAMICS. 

In all the transformations of a material system considered in this 
book there is a certain entity which 

(1) Remains constant in quantity, 
(2) Is capable under certain conditions of assuming the forms of 

kinetic and potential energy which are dealt with under the study of 
Rational Dynamics. 

This entity is called energy. 
As it is only possible to study changes of energy the expression for 

the energy of a material system necessarily contains an unknown constant. 
Irreversible transformations exist, and if such a transformation can 

take place it will do so. A reversible transformation can only be regarded 
as the limiting form of an irreversible one. 

An irreversible transformation involving energy must from the very 
nature of irreversibility transform energy into forms which are less capable 
of further transformation than they were previously, and this fact is 
expressible by the statement that such a transformation involves a loss 
of availability. 

In order that the irreversible effects of different transformations 
should be capable of comparison and quantitative measurement it is 
necessary that compensating transformations should exist. In all the 
problems considered in this book, it has been assumed that this is the case. 

When irreversible changes have occurred in the interior of a finite 
system we accordingly assume that the system itself can be brought back 
to its initial state by a compensating transformation, but in this case 
changes must take place in some other part of the universe. An irre¬ 
versible transformation thus leaves an indelible imprint somewhere or other 
on the progress of events in the universe considered as a whole. 

The kinetic and potential energies considered in rational dynamics 
are under all conditions to be regarded as wholly available for trans¬ 
formation into other forms. We shall call these forms of energy mechanical 
energy or shortly work. 

We may therefore measure the loss of availability of an irreversible 
transformation by the loss of energy capable of being transformed into 
work or kinetic and potential energy of visible motion, that is by loss 
of available energy. It is however necessary to specify more fully the 
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conditions under which energy is transformable in order to render the 
notion of available energy definite. 

The various forms of kinetic and potential energy occurring in 
phenomena that can he studied by the methods of reversible dynamics, 
with the exclusion of statistical methods as applied to molecular dynamics 
are in general to be regarded as wholly available energy. 

Under this heading we include those forms of energy occurring in 
hydrodynamics and elasticity, where the equations of reversible dynamics 
are applied in conjunction with the methods of the infinitesimal calculus. 

Such applications involve the conception of differential elements 
which are large compared with the molecular structure of matter but 
sufficiently small to define the properties of matter treated in reversible 
dynamics. The conception of such elements is involved in the definitions 
of pressure and density “at a point". 

s While the notion of a differential element is necessarily an artificial 
| one and it is not possible a priori to draw a hard and fast line between 

energy which is and energy which is not available under all circumstances, 
experience shows that in a large number of physical phenomena the 
distinction is well marked. It is in such cases that thermodynamical 
methods become applicable. 

^ Energy can be transferred from one body to another or from one 
. differential element of a body to another, otherwise than by the per¬ 

formance of work. In such cases the energy so transferred is called heat 
and the quantity of energy so transferred is called the quantity of heat 
passing from the one body or element to the other. 

Energy communicated to a body in the form of heat is in general 
partially but not wholly available for conversion into work, the proportion 
which is available depending on the physical state of the body and the 
external conditions to which it is subjected. Hence we cannot speak of 
a system as containing a definite quantity of heat or a definite quantity 
of work. 

Passage of heat from one body to another is usually irreversible 
and therefore accompanied by a loss of available energy. If we define 
A to be hotter or colder than JB according as available energy is lost 
or gained by the transference of heat from A to J5, it follows that heat 
can and in general will pass from hotter to colder bodies, but the reverse 
change can only be effected by combining it with a compensating trans¬ 
formation. When no transference of heat tends in either direction the 
bodies are said to be in thermal^equilibrium. 

Carnot’s cycle reversed is a compensated reversible transformation 
by which heat can be continuously taken from a colder and given to a 
hotter body or vice versa without loss of availability (§ 63). In this 
case the compensating transformation takes the form of work absorbed 
or produced. 

The ratio of the quantities of heat passing to and from two bodies 
in a Carnot’s cycle is called the absolute temperature-ratio of the bodies, 
and leads to a definition of absolute temperature which, is in accordance 
with all the ordinary properties of temperature (§ 63). 
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Lbsolute temperature as thus defined in thermodynamics contains an 
rminate constant factor depending on the magnitude of the unit or 

which is arbitrary, and must be fixed by convention. 
-hat thermal equilibrium between two bodies is unaffected by dis- 
g the bodies so as to alter their relative position or orientation is 
self evident truth. On the contrary this property is deducible from 

ain assumption as to the nature of the forces between the bodies, 

['he conception of temperature at a point of an unequally heated 
rests on conventions similar to those employed in defining pressure 
point or density at a point in ordinary dynamics, and involves the 
.eration of differential elements. The property that the temperature 
point of a material body is the same in all directions depends on 
sumption similar to that mentioned just above, 
in isolated system will tend to a state of stable equilibrium in 

the available energy is a minimum subject to the conditions that 
)tal energy is constant, and it follows that the unavailable energy 
)6 a maximum. In this state of equilibrium thermal equilibrium 
exist between all parts of the system, i. e. they must be at the 
temperature. 

Let a finite system be in the presence of an indefinitely extended 
ial medium all of whose parts are in thermal and mechanical 
brium and therefore at a uniform temperature T0. Let the system 
go any change, such, for example as an irreversible internal change, 

communication of heat from without, this heat representing energy 
l is not wholly available under the conditions postulated. Then the 
ise of non-available energy produced by the change is proportional 
e absolute temperature T0 of the medium. This increase when 
3d by Tq is therefore a quantity depending only on the changes 
l take place in the system and not on the temperature of the medium, 
quantity is called the increase of entropy produced in the system 

given transformation. From this increase the entropy of the system 
ined, but its expression contains an unknown constant entering in the 
form as an integration constant. 

In some irreversible transformations the change of entropy can be 

ssed as a sum of differentials of the form in many others it is 

ssible to do this in any simple way. 

Entropy is increased by irreversible transformations, but can never 
ase. If a finite system is put through an irreversible cyclic change, 
must be an increase of entropy somewhere outside the system. 

When the available energy of a system is a minimum it follows 
the ordinary properties of maxima and minima in analysis that its 

ential in general vanishes to the first order. For this reason the 
bions of reversible thermodynamics are in general applicable to 
tigate the conditions of thermodynamic equilibrium. The inequalities 
[•reversible thermodynamics are required in discussing stability of 

‘brium/ 
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The properties of systems in thermodynamic equilibrium are thus 
made to depend on potential functions similar to those occurring in 
statics, but with the addition of one further variable. By suitable modi¬ 
fications of tbe potential function this variable may be made to be the 
temperature. If such a potential function is known as a function of the 
corresponding variables for a given system the thermodynamic properties 
of the system are completely defined. 

The thermodynamic properties of a simple system as represented by 
a homogeneous fluid are completely specified by the following data, or 
their equivalents: 

(a) The pressure as a function of the volume and temperature for 
all volumes and temperatures. 

(b) The specific heat at constant volume as a function of the tem¬ 
perature alone at one particular volume only. 

The properties of a reversible thermo-electric network are determined 
by a single ‘function which represents at any point the quantity of entropy 
gained by carrying a unit charge to that point. From the effect of 
electric currents on the localisation of both available and unavailable 
energy it appears that entropy must be regarded as capable of being 
located in an electric charge. 
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ASSISTANT PROFESSOR OF MATHEMATICS AT THE UNIVERSITY OF CALIFORNIA 

[VIII, 298 p.] 1906. Cloth: M 10.—. 

Differential geometry in the hands of Monge, G-auB and their successors was concerned 
almost exclusively with metrical properties. The most important contributions toward a systematic 
projective differential geometry are the papers ofHalphen on the differential invariants of plane 
and space curves, and those of the author on ruled surfaces. In the present treatise these in¬ 
vestigations have been collected in a systematic fashion, subjected to a new and uniform method 
of treatment, and are now presented to the public in their entirety. Projective differential geometry, 
as a separate and distinct subject, now appears for the first time. Analytically, the theory of 
invariants of linear differential equations is the foundation of the projective theory of curves, 
so that a brief sketch of Lie’s theory of continuous groups is followed by a detailed account of 
the invariants and covariants of linear differential equations. The generalization of this theory 
of invariants to a system of differential equations gives rise to the theory of ruled surfaces. The 
main divisions of the book arise naturally as a consequence of this method of treatment. 
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BEING LECTURES ON MATHEMATICAL PHYSICS 
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PROFESSOR OF PHYSICS, DIRECTOR OF THE PHYSICAL LABORATORY, 

CLARK UNIVERSITY, WORCESTER, MASSACHUSETTS. 

[XII, 588 p.] 1904. Cloth: M 14.—. 

The aim of this book is to give in compact form a treatment of so much of the fundamental 
science of dynamics as should be familiar to every serious student of physics. Of the many ex¬ 
cellent treatises on dynamics existing in English, many appeal chiefly to the student of mathematics, 
being in fact generally written by mathematicians, while nearly all fill one or two volumes with 
one of the subdivisions, Dynamics of a Particle, Rigid Dynamics, Hydrodynamics or Elasticity. 
It is practicaUy impossible for the physical student, while devoting the necessary amount of time 
to the laboratory, to read through all of these works, and thus his knowledge of the whole subject 
generally remains fragmentary. The attempt has here been made to treat what is essential to 
the understanding of physical phenomena, leaving out what is chiefly of mathematical interest. 
Thus the subject of kinematics is not treated by itself, but as much of it is introduced in connec¬ 
tion with each subdivision as is necessary for the treatment of dynamical matters. The endeavor 
is made to acquaint the student with as many of the methods of attacking questions as possible, 
and thus the important subjects of energy, least action, and Lagrange’s equations are not relegated 
to a late chapter, hut occupy a prominent place near the beginning, and are made use of throug¬ 
hout the book. The subject of oscillations and the properties of cyclic and concealed motions, 
which have become so important in physics, next reoeive attention. In connection with the motion 
of rigid bodies, the question of rotation- is considered in considerable detail, with a number of 
practical examples. 

The theory of the potential function is then taken up, followed by the treatment of stress 
and strain, with applications to the more simple problems of elasticity, including the problem of 
St. Venant. In Hydrodynamics the main questions of wave and vortex motion are dealt with. 
Thus the student is prepared for the study of sound, light, and electricity. It is believed that no 
work on Dynamics in English treats in a single volume such a variety of subjects. 
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The earlier chapters of the text are devoted to an elementary exposition of the theory of 

Galois Fields chiefly in their abstract form. The conception of an abstraot field is introduced 

by means of the simplest example, that of the classes of residues with respect to a prime modulus. 

For any prime number p and positive integer n, there exists one and but one Galois Field of 

order pn. In view of the theorem of Moore that every finite field may be represented as a Galois 

Field, our investigations acquire complete generality when we take as basis the general Galois 

Field. It was found to be impracticable to attempt to indicate the sources of the individual 

theorems and conceptions of the theory. Aside from the independent discovery of theorems by 

different writers and a general lack of reference to earlier papers, the later writers have given wide 

generalizations of the results of earlier investigators. 

The second part of the book is intended to give an elementary exposition of the more 

important results concerning linear groups in a Galois Field. The linear groups investigated by 

Galois, Jordan and Serret were defined for the field of integers taken modulo p and the general 

Galois Field enters only incidentally in their investigations. The linear fractional group in a 

general Galois Field was partially investigated by Mathieu, and exhaustively by Moore, Burnside 

and Wiman. The work of Moore first emphasized the importance of employing in group problems 

the general Galois Field in place of the special field of integers, the results being almost as simple 

and the investigations no more complicated. In this way the systems of linear groups studied 

by Jordan have all be generalized by the author and in the investigation of new systems the 

Galois Field has been employed ab initio. 

The method of presentation employed in the text often differs greatly from that of the 

original papers; the new proofs are believed to be muoh simpler than the old. For example, the 

structure of all linear homogeneous groups on six or fewer indices which are defined by a quadratic 

invariant is determined by setting up their isomorphism with groups of known structure. Then 

the structure of the corresponding groups on m indices, rrT>6, follows without the difficult calcu¬ 

lations of the published investigations. In view of the importance thus placed upon the iso¬ 

morphisms holding between varibus linear groups, the theory of the compounds of a linear group 

has "been developed at length and applied to the question of isomorphisms. Again, it was found 

practicable to treat together the two (generalized) hypoabelian groups. The identity from the 

group standpoint of the problem of the trisection of the periods of a hyperelliptic function of four 

periods and the problem of the trisection of the periods of a hyperelliptic function of four periods 

and the problem of the determination of the 27 straight lines on a general cubic surface is 

developed in Chapter XIV by an analysis involving far less calculation than the proof by Jordan. 


